
 

 
7 

Chemical Science & 

Engineering Research 
 

Chem. Sci. Eng. Res., 2021, 3(8), 7-11. 

Research Article 
 

 

DOI: 10.36686/Ariviyal.CSER.2021.03.08.036                                                                                                      Chem. Sci. Eng. Res., 2021, 3(8), 7-11. 

  

 

Performance Analysis of Various Supervised Classifiers for 
Predicting Preterm Delivery using Multi-channel Uterine EMG 
Signals 
 
Suma K.V.,

a
 Mamtha M.*

b
 and Pooja

c
 

 
abcDepartment of Electronics and Communication, M S Ramaiah Institute of Technology, Bangalore. 

 

*Corresponding author E-mail address: mamtha.m@msrit.edu (Mamtha M.)
 

 

 
 

Ariviyal Publishing Journals  

ISSN: 2582-3353 Abstract: Prediction of premature labour is of great significance in preventing infant deaths, or the consequent health 
risks globally. The enormous global burden on both families and society calls for preventive and predictive measures. 
The uterine Electromyography signals also called as Electrohysterogram (EHG) signals, has been very promising in 
studying the uterine contractions. Therefore, use of uterine EMG signals can prove to be a marker in diagnosing 
Preterm birth. In this study, the TPEHG DB (Term-Preterm Electrohysterogram Database) dataset with 300 records (262 
term and 38 preterm records) are used. The raw uterine EMG signal is initiallypre-processedandthen various linear, 
non-linear and statistical features are extracted. The extracted features are applied to different machine learning 
classifiers. Further, Bayesian Hyper parameter Optimization technique was employed on these classifiers to improve 
their classification accuracy. Support vector machine (SVM) classifier with Bayesian Hyper parameter Optimization 
technique, tested using 10-fold cross-validation on 38 preterm records provided 96.667% accuracy. 
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1. Introduction 

Premature labour (pregnancy duration < 37 weeks) is one of the 

most significant public wellbeing issues, which is the supporter of 

new born child dismalness and mortality. Nearly 7% of all births are 

preterm.
[1,2]

 Determining preterm labour can be very useful in 

providing the necessary treatment.
[3]

 Over the past decade, 

examination of uterine EMG signals has been used for analysis of 

preterm labour. Untimely labour expectation is a firmly troublesome 

undertaking because of the unpredictable uterine contractions. 

Uterine Electromyography signals determine the uterine contractions 

which are recorded non-invasively using bio potential electrodes.
[4]

 

The recent researches in this area show that uterine 

electromyography signals are very useful to separate true and 

premature delivery records. 

 In
[5]

 linear and the nonlinear features were compared for 

classification of signals. Consequently, the nonlinear feature such as 

sample entropy accuracy was higher than the accuracy of linear 

features such as root mean square value. 

Approximation entropy and the time reversibility features were 

used to differentiate between the term and preterm contractions.
[6]

 

True and premature labour contractions were analysed using wavelet 

transform.
[7]

 

In AR and wavelet
[8]

 analysis were used for extracting the 

features and then unsupervised statistical classification was 

performed based on Fisher’s Exact Test. Pyramid algorithm based 

Discrete Wavelet Transform (DWT) was employed to differentiate 

EHG Signal for true labour and preterm labour signals.
[9]

 Cepstral 

analysis was used to determine premature labour.
[10]

 

Preterm labour detection using uterine EMG signals have been 

presented in most of the recent studies. This paper focuses on using 

linear, non-linear and statistical features to classify records. The 

following linear features are chosen: Root mean square, peak 

frequency, median frequency, waveform length, zero crossings. Non-

linear feature like sample entropy and statistical features including 

mean absolute value, variance and standard deviation were 

extracted from uterine EMG signals. Then these three types of 

features are applied to four different classifiers which are 

Classification and Regression Tree (CART), Naive Bayes, k-Nearest 

Neighbour (KNN) and Support Vector Machine (SVM). Further, 

Bayesian Optimization technique is employed in order to increase 

the overall classification accuracy. Finally, comparison of these four 

different classifiers’ accuracies with and without Bayesian 

Optimization technique is performed. 
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The contents of this paper are structured as: Section II explains 

the Methodology i.e., the dataset, pre-processing, feature extraction 

and classifiers used. Section III presents the results and discussion. 

The final conclusion is presented in section IV. 

 

2. Methodology 

2.1. Uterine EMG Dataset Description 

In this work, the TPEHG (Term-Preterm Electrohysterogram) dataset 

is used. It consists of 300 uterine EMG records. These records were 

performed at the Department of Obstetrics and Gynaecology, 

Medical Centre Ljubljana, Ljubljana.
[5]

 Each record was taken for 

about 30 minutes with sampling frequency of 20 Hz and consists of 

three channels with four electrodes as shown in Fig. 1. 

The scanning system with 16-bit resolution and ±2.5mV 

amplitude range was used. Each record was obtained by placing four 

AgCl2 electrodes on the abdominal surface forming three channels. 

1. The first electrode (E1) was placed 3.5 cm towards left and 3.5 cm 

over the navel; 

2. The second electrode (E2) was placed 3.5 cm towards right and 3.5 

cm over the navel; 

3. The third electrode (E3) was placed 3.5 cm towards right and 3.5 

cm under the navel; 

4. The fourth electrode (E4) was placed 3.5 cm towards left and 3.5 

cm under the navel. 

First channel:     S1 = E2 – E1 

Second channel: S2 = E2 - E3 

Third channel:   S3 = E4 - E3 

The signals were filtered before sampling using a three-pole 

analog Butterworth filter with a bandwidth ranging from 0 – 5 Hz. 

Out of these 300 records, 262 records were taken during pregnancies 

which resulted in term delivery (gestation duration at delivery >37 

weeks). Further these 262 records were classified according to the 

week of gestation in which the uterine EMG signal was recorded. 143 

records were taken before the 26
th

 gestational week. 119 records 

were taken during or after the 26
th

 gestational week. 

The remaining 38 records were taken during pregnancies which 

ended in premature birth (gestation duration at delivery ≤ 37 weeks). 

In these 38 records, the records obtained before the 26
th

 gestational 

week was 19 and the records obtained during or after the 26
th

 

gestational week were 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Pre-processing 

The uterine EMG signal with lower frequencies consists of noise due 

to breathing and stretching of skin. Hence, the signals are first pre-

processed using Butterworth digital filters with different frequency 

bands like 0.08 – 4 Hz,
[11]

 0.05 – 4 Hz,
[13]

 0.2 – 4 Hz.
[12]

 To remove the 

transient effects of the filters, 90 seconds of beginning and end part 

of the records was removed. 

The drawback of Butterworth digital filter is phase-shifting, which 

is problematic when high-pass filtering is used. This drawback can be 

eliminated by filtering the entire signal twice in different directions, 

forward and backward obtaining a zero-phase shift filtered signal. 

Thus, a four pole Butterworth filter is used with bandwidth range 0.3 

Hz – 4 Hz. The pre-processed uterine EMG signal for both Term and 

Preterm record is shown in Fig. 2 and Fig. 3. 

 

2.3. Feature Extraction 

The most important part of the pattern recognition is the feature 

extraction. The features extracted must be effective as the accuracy 

of classification depends on these features. This research work 

includes 6 linear, 1 non-linear and 3 statistical feature that includes 

the features of both time-domain and frequency-domain extracted 

from the uterine electromyography (EHG) signals to differentiate 

between true and premature record. 

 

 

 

          
Fig. 1.  Electrode placement on the abdomen  

Fig. 2.  EHG Signal (Term Record) 

Fig. 3.  EHG Signal (Preterm Record) 
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2.3.1. Root Mean Square (RMS) Value 

It is calculated as the square root of mean of the square of all the 

samples in a signal. It is given by equation (1) 

 

     √
 

 
∑         

                                                                                (1)  

 

Where, N = sample size,       = input signal 

 

2.3.2. Peak Frequency 

The frequency at which the maximum peak occurs is called as the 

peak frequency. The peak frequency      is calculated by equation 

(2) 

 

        (
  

 
      

       )                                                               (2) 

 

Where    = sampling frequency, N = sample size, P = frequency 

power spectrum 

 

2.3.3. Median Frequency 

It is the frequency at which half of the total power within the 

epoch is reached. It is given by equation (3) 

 

     
  

 
 ∑     

    
     ∑          

    
                                                  (3)                                               

 

Where    = sampling frequency, N = sample size, P = frequency 

power spectrum 

 

2.3.4. Waveform Length 

Waveform length (WL) is the cumulative length of the wave over   

a period of time. It is given by 

 

   ∑ |        |   
                                                                              (4)                                               

 

Where    = input signal, N = sample size 

 

2.3.5. Zero Crossings 

Zero crossing (ZC) is the number of times; the amplitude of the 

waveform crosses the zero y-axis. It is formulated as in equation (5) 

 

   ∑                |        |               
                  (5)                                               

 

Where    = input signal, N = sample size 

 

2.3.6. Peak Location 

It is the sample number at which the signal exhibits maximum 

amplitude. 

 

2.3.7. Sample Entropy 

Sample entropy is used for estimating the complexity of the time 

series signal. The main advantage of using sample entropy is that it is 

independent of the length of the data and makes the 

implementation trouble-free. It is given by equation (6) 

 

       {   
    (

   

     
)                     

                            
                                       (6)                                               

 

Where N = sample size 

 

2.3.8. Mean Absolute Value (MAV) 

It is calculated by taking the average of the absolute value of the 

signal as given by equation (7) 

 

    
 

 
∑ |  | 

                                                                                       (7)                                               

 

Where    = input signal, N = sample size 

 

 2.3.9. Variance 

The variance is the mean value of the square of the deviation of 

that variable. It is calculated by equation (8) 

 

    
 

   
∑   

  
                                                                                      (8)                                                                      

 

Where    = input signal, N = sample size 

 

2.3.10. Standard Deviation 

The standard deviation SD of a signal is formulated as by 

equation (9) 

 

   √
 

   
∑   

  
                                                                                      (9)                                                                      

 

Where    = input signal, N = sample size       

 

2.4. Machine Learning Classifiers 

The classification was performed using supervised Machine learning 

algorithms such as Classification and Regression Tree (CART), k 

nearest neighbour (KNN), Naïve Bayes and Support Vector machine 

(SVM). CART is a decision tree that employs low cost and complexity 

approach. It combines a decision tree inducer for discrete classes, as 

well as a structure for inducing regression trees. CART involves many 

techniques, such as the surrogate device for dealing with missing 

values and the way of handling nominal attributes.
[15]

 KNN classifier 

with k=5 was used for its high success rate and low complexity, but 

since the dataset size is finite, it is not assured for the convergence to 

get the optimal solution.
[16]

 The Naïve Bayes algorithm which uses 

Bayes theorem performs well even if there is a small amount of 

dataset. The Support vector machine (SVM) algorithm which works 

on the principle of structural risk minimization for predicting the data 

correctly has a very outstanding record for the classification of 

uterine EMG signal. To minimize training error different kernel 

functions are used. In this work the radial basis kernel function (RBF) 

is used in the design of SVM. 
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2.5. Bayesian Hyper parameter Optimization Technique 

The main idea of Bayesian Hyper parameter Optimization is to build a 

probabilistic model of the required objective function and then use it 

in selecting the most favourable hyper parameter to estimate the 

true objective function. This optimization technique is efficient as it 

chooses the next hyper parameter in an informed way. By evaluating 

hyper parameters that are more efficient from past results, a better 

model can be created with a reduced number of iterations with the 

Bayesian method. 

 

3. Results and Discussions 

To classify the term and preterm labour records, various linear, non-

linear and statistical features have been extracted and applied to the 

four aforementioned classifiers: 

Table 1 shows the Mean ± Standard Deviation values of all the 

features of the 262 Term uterine EMG records. The above features 

are extracted in the frequency range of 0.3 – 4 Hz. From the table, it 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

can be inferred that all the feature values for channel 1 are higher 

than the other two channels. Root mean square, mean absolute 

value, variance and standard deviation values of channel 2 are higher 

than that of channel 3. For the remaining features, channel 3 is 

dominating over channel 2. 

Table 2 presents mean ± SD values of all the features of 38 

Preterm uterine EMG records. Similar to Term records, these 

features are also extracted in the frequency range of 0.3 – 4 Hz. From 

the table 2, it can be seen that all the feature values for channel 1 are 

higher than the other two channels. The Root mean square, mean 

absolute value, variance and standard deviation, waveform length 

values, median frequency values of channel 2 are higher than that of 

channel 3. For the remaining features, channel 3 is dominating over 

channel 2. 

On comparing the feature values of both the Term and Preterm 

records, there is a huge difference in Root mean square, peak 

frequency, variance and standard deviation. However, median 

frequency values can also be used as an effective feature to 

represent frequency domain characteristics. Sample entropy values 

are as expected with values for Preterm records being lower than the 

Term records. The zero crossing values for channel 1 are effective 

than for channel 2 and channel 3. Even though the differences in 

values among all the features are noticeable, they are dispersed. 

Table 3 indicates that the algorithm CART provided the lowest 

specificity (Sp), sensitivity (Se) and accuracy for all the three 

channelswhen compared with the other three classifiers. KNN and 

Naïve Bayes algorithm provided good specificity of 94.23, 100, 98 and 

 
Fig. 4.  Comparison of Accuracies of Classifiers 

 

 

 

Table 1. Features of uterine EMG signals of Term Record (Values 
expressed as Mean±Standard Deviation 

 

Feature name 

Channels of Term Record 

CH1 CH2 CH3 

Root mean 

square(mV) 

94.8±56.4 78.4±47.8 72.2±47.3 

Peak frequency 

(Hz) 

0.53±0.41 0.39±0.15 0.46±0.34 

Median frequency 
(Hz) 

0.23±0.11 0.173±0.06 

 
 

0.21±0.09 

Waveform 

length(µm) 

833360± 

296383 
547000± 

259666 
 

566000± 

174386 

Zero crossings 5093.8± 

1272.9 
3920±1154 

 
 

4888± 

1222 

Maximum Peak 

location 

2126± 

1248 
1671±1043 

 
 

2023± 

1192 

Sample entropy 1.76±0.28 1.46±0.31 1.74±0.27 

Mean absolute 

value 

59.83±26 50.7±25.8 42±17.39 

Variance 12180± 

22113 

8450± 

14278 

7451± 

1573 
Standard deviation 94.8±56.4 78.4±47.8 72.2±47.3 

 

 Table 2. Features of uterine EMG signals of Preterm Record  
 

Feature name 

Channels of Preterm Record 

CH1 CH2 CH3 

Root mean 

square(mV) 

84.5±35.5 74.2±31.4 65.9±28 

Peak frequency 

(Hz) 

0.45±0.28 0.37±0.05 0.40±0.19 

Median 
frequency 

(Hz) 

0.19±0.07 0.17±0.05 0.16±0.04 

Waveform 

length(µm) 

770000± 

275619 

534000± 

209551 

528000± 

185919 

Zero crossings 4903± 

1226 

3874± 

1174 

4481± 

1134 

Maximum Peak 
location 

2090± 
1261 

1489± 
1002 

1863± 
1164 

Sample entropy 1.64±0.36 1.42±0.36 1.59±0.27 
Mean absolute 

value 

57.3±25.5 50±23.2 42.8±17.9 

Variance 8390± 
7434 

6470± 
6065 

5120± 
4646 

Standard 

deviation 

84.5±35.5 74.2±31.4 65.9±28 

 

 

Table 3. Classification Results without Bayesian Optimization 

Classifier 

name 

10-fold cross validation 

 

CH 

 

Sp (%) 

 

 

Se (%) 

Overall 

accuracy 

(%) 

CART CH1 90.38 12.5 80 

CH2 90.38 25 81.67 
CH3 84.62 25 76.67 

KNN CH1 94.23 58 81.67 

CH2 100 12.5 88.33 
CH3 98 67 85 

Naive 

Bayes 

CH1 96.15 25 83.33 

CH2 96.15 12.5 85 
CH3 94.23 12.5 83.33 

SVM CH1 100 75 88.33 

CH2 100 75 88.33 
CH3 100 75 88.33 
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96.15, 96.15, 94.23. The sensitivity values of KNN and naïve Bayes 

algorithm are slightly better than CART i.e., 58, 12.5, 67 and 25, 12.5, 

12.5. SVM provided the best accuracy (88.33), specificity (100) and 

sensitivity (75) when compared to the other classifiers used. 

Table 4 indicates the accuracies of algorithms implemented with 

the Bayesian Hyper parameter Optimization technique. The CART 

algorithm obtained the accuracy of 88%, 82% and 79% for the three 

channels. The K nearest neighbour algorithm provided the accuracy 

of 90% for channel 1 and channel 2 and 89% for channel 3. Naïve 

Bayes performed slightly low than the KNN algorithm with an 

accuracy of 91.667%, 86.22% and 88%. Finally, SVM had given the 

best and highest accuracy of 96.667%, 95% and 96.667% for the 

three channels. 

Fig. 4 gives the comparison of both the implementation methods 

i.e., the four classifiers implemented with and without Bayesian 

Optimization. The accuracy of SVM for all the three channels is 

higher followed by KNN and Naive Bayes. Naïve Bayes and KNN 

showed good accuracies for channel 1. The CART algorithm 

performed the lowest compared to others. 

 

4. Conclusions 

The main objective of this research is to classify between term and 

preterm signals. Hence, different linear, non-linear and statistical 

features were extracted and applied to four different classifiers 

CART, KNN, Naïve Bayes and SVM. Further to improve the 

classification accuracy, the same classifiers were implemented with 

Bayesian Optimization technique. From the results obtained, it can 

be stated that the accuracy of channel 1 of the classifiers is high. 

Hence, the use of channel 1 can be more efficient for determining 

the true and premature labour. To obtain the highest classification 

accuracy, Support Vector machine (SVM) algorithm can be used as it 

provides the best classification accuracy among the four classifiers 

used. 
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Table 4. Classification Results with Bayesian Optimization 

Classifier name 10-fold cross validation 

Channel Overall accuracy 

(%) 

CART CH1 88 

CH2 82 

CH3 79 
KNN CH1 90 

CH2 90 

CH3 89 

Naïve Bayes CH1 91.667 

CH2 86.22 

CH3 88 
SVM CH1 96.667 

CH2 95 

CH3 96.667 
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