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ISSN: 2582-3353 Abstract: Kinase belongs to large family of enzymes that catalyse transfer of high energy phosphate molecule to 

substrates like protein, lipids, carbohydrates and nucleic acid. Protein tyrosine kinases are becoming therapeutically 
active target as It plays a significant role in several signal transduction and immunological reactions. Dysregulation, 
overexpression and mutation of protein kinase found in many diseases including cancer and immunopathological 
conditions. InSilico methods of drug discovery are considerably cheaper and faster compared to traditional methods 
available today. In the present work, the use of QSAR model is shown in the discovery of new tyrosine kinase 
inhibitors. Total of 7226 compounds retrieved from the ChEMBL database and were used after manual curation. More 
than 2000 descriptors of different class were calculated for individual compounds. Manual curation, outlier removal 
and feature selection techniques were used to reduce the number of insignificant features. Four machine learning 
algorithms called SVR, MLR, RF and RT are used to build the final QSAR model. We also have applied the internal and 
external evaluation parameters to check the model stability and its prediction power. All the four models developed 
were showing acceptable range of R2 like 59.40, 58.84, 97.1, and 99.32 for MLR, SVR, RF and RT respectively on training 
set. Similarly test dataset was evaluated with the same matrix and showing nearly similar values to train set except RT 
algorithm. Y-randomization test also performed and confirmed that model is not produced by chance. 
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1. Introduction 

Kinases are grouping of proteins those catalyses the transfer of 

phosphate group from high energy phosphate donating molecules to 

specific substrate. Human genome contains more than 500 kinase 

encoding genes. Kinases can be classified according to substrates 

they act upon. They can be of lipid kinase, protein kinase or 

carbohydrate kinase.
[1,2]

 Protein kinase are named based on the 

regulators of their activity as it is being observed that protein kinases 

do have a multiple substrates and proteins can serve as substrate for 

more than one protein kinase.
[3]

 Protein kinase does phosphorylation 

of proteins on their serine, threonine, tyrosine or histidine residues. 

Such phosphorylation modifies the structure and function of proteins 

in many ways. This modification can result in increase or decrease in 

the activity, stabilization, marking for destruction, localization and 

others. Protein kinase covers majority of the all kinases and are also 

well studied. These kinases play a major role in signalling in the cell.
[1]

 

Protein tyrosine kinase, of which 90 there are in human genome, 

phosphorylates tyrosine residue on the target protein. This 

phosphorylation is noteworthy because they regulate most aspects 

of cell proliferation, differentiation and cell metabolism. We have 

two types of receptors those can activate tyrosine kinase, first is a 

type, in which tyrosine kinase enzyme is integral part of receptor’s 

polypeptide chain. These are called as receptor tyrosine kinase 

(RTKs). In another class where receptor such as cytokine receptors, 

receptors and kinase are encoded by the different genes yet bound 

together tightly. Like cytokines, cytokine receptors are also evolved 

from the common ancestors and have a common structure. Cytokine 

receptors do not possess the intrinsic activity. Rather the tightly 

bound JAK to cytosolic domain of cytokine receptors. JAK kinase is 

also known as just another kinase, because when they were 

discovered, their function was unknown. It has been over more than 

2 decades when the Jak2 was first cloned by Wilks and colleagues.
[4]

 

This Jak2 protein shared a hall mark features with Janus kinase or just 

another kinase family of tyrosine kinase enzymes. This protein is 

widely expressed and virtually found in every cell of the body. Jak2 is 

an important downstream signalling molecule for number of ligands 

including those that binds cytokine, tyrosine kinase receptor and G-

protein coupled receptors. Among Jak family Jak2 is involved in 

various processes such as cell growth, development, differentiation 

or histone modifications. It also mediates essential signalling events 

in adaptive and innate immunity. In the cytoplasm it plays an 

essential role in signal transduction via its associated type 1 

receptors such as growth hormone receptors (GHR), Prolactin (PRLR), 
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Leptin (LEPR) or type II receptors including IFN-alpha, IFN-beta, IFN-

gamma and multiple interleukins.
[5]

 Activation of Jak Kinase leads to 

phosphorylation of tyrosine residues in cytokine receptors. This will 

create docking site for signal transducers and activators of 

transcription (STATs).
[6]

 Subsequently, it will phosphorylate STATs 

protein once they are required to the receptors and will move to 

nucleus for the activation of gene transcription.
[7]

 In addition to that 

Jak2 mediates angiotensin-2 induced ARHGEF1 phosphorylation
[8]

 

Jak2 also plays a significant role in cell cycle by phosphorylation of 

CDKN1B.
[9]

 Normally the functions of tyrosine kinase are highly 

regulated and tightly controlled by antagonizing the effect. There are 

several instances where tyrosine kinase acquires transforming 

functions and it will hamper the regulatory functions in cellular 

responses like cell division, growth and death.
[10]

 Mutation in 

tyrosine kinase is associated with glioblastoma, ovarian tumours, 

non-small cell lung carcinoma, multiple myeloma, human bladder 

and cervical carcinoma.
[11–13]

 Apart from considering cancer as a main 

reason to use Jak as a target, there are several other reasons also to 

consider it as a potential therapeutic target. Plenty of literature 

suggest that JaK dependent cytokines are major cause of immuno 

pathology and blocking such cytokines with biologics can be 

beneficial in immune mediated responses.
[14]

 Current traditional 

methodology adopted for drug discovery and design requires a long 

time and huge amount of money. It has been estimated that to 

introduce a novel therapeutic agent in to market requires around 10-

15 years and around US 800$ million of investments. Today, 

pharmaceutical companies are focusing on reducing the time and 

money in development of new drug without affecting the quality of 

drug.
[15,16]

 To achieve this high through put technique was adopted, 

in which we can screen a huge number of compounds at one time. 

HTS techniques helped a lot but very low significant success was 

found at the end stage of development process.
[17,18]

 Today, we have 

combination of high computational techniques, biological science, 

chemical synthesis which can facilitate the current discovery process. 

The term computer aided drug design is adopted for the use of 

computer in drug discovery process. This branch focuses on drug 

design based on drug receptor interactions, molecular docking, 

simulation, machine learning and many other techniques. In the 

present work, the author has used QSAR (Quantitative Structural 

Activity Relationship) method to predict the novel Jak-2 inhibitor. 

QSAR method is ligand-based drug design. The principle of QSAR 

model is based on the belief that biological property of the 

compound is directly correlated to its structural features. QSAR 

model involves the construction of mathematical equation based on 

the structural features calculated and its biological activity.
[19,20]

 

QSAR model assumes that compounds with similar structural 

properties have similar biological activities. A model is developed 

first by collecting the lead compounds with known biological activity. 

A model is used to predict the activity of unknown compound using 

several machine learning algorithms used in the development 

process. QSAR model now a days are widely used to modify existing 

molecule to enhance its biological activity.
[21,22]

 

In the present work, the author has used supervised machine 

learning approach to develop the QSAR model for prediction of 

inhibitory action against Jak-2 tyrosine kinase. A model is trained, 

tested and validated using statistical parameters and tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Materials and Methods 

2.1. The data set 

The ChEMBL web server was used to download dataset required to 

build QSAR model (Fig. 1). The compounds with known biological 

activity (IC50) values were downloaded by searching the target 

section for tyrosine kinase enzyme. Initial dataset comprises of total 

7226 SMILES with their inhibitory activities was downloaded to local 

computer
[23,24]

 (Supplementary_1). At first the dataset was manually 

curated for ‘NIL’, ‘BLANK’, ‘ZERO’ and invalid ChEMBL IDs. Total of 

1066 compounds were removed from the downloaded database. The 

IC50 values of the remaining 6160 compounds was converted in to 

pIC50 (-log of IC50 values) and used for model development. Next, 

6160 SMILES were converted in to sdf format using OpenBabel 

software
[25]

 (Supplementary_2). During conversion hydrogen atom 

was added to make compounds explicit and to mimic the real 

situations.
[26]

 

 

2.2. Descriptor calculation 

In the present work, total 8 groups of descriptors namely 

‘constitutional indices’, ‘Ring Descriptors’, ‘Topological indices’, 

‘connectivity indices’, ‘Functional group counts’, ‘Atom-type-E-state 

indicies’,’2D-atom pairs’ and ‘molecular properties’ were calculated 

using Alvadesc V. 2.0.10.
[27]

 A total of 2323 descriptors were 

calculated for the given 6160 ‘sdf’ structures. The descriptors having 

‘na’ values were removed from the progressing database. The 

database with 2226 descriptors and 6160 compounds was checked 

for the presence of outliers (Supplementary_3). In the present work, 

both structural and activity outliers were considered insignificant for 

model development. Inter quartile range was used to calculate the 

 
Fig. 1. Graphical Work of modelling process used in the study 
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outliers and total of 2310 outliers were removed from the database 

(Supplementary_4). Final data base of 3850 compound was then 

used for selection of significant descriptors based on several 

statistical calculations
[28]

 (Supplementary_5). 

 

2.3. Descriptor selection and removal  

It is important for any machine learning model to have a smaller 

number of significant features to develop the prediction model. First, 

the dataset was divided in to training and testing dataset using 70% 

and 30% ration (Supplementary_6). Several feature selection 

techniques were used to reduce the number of descriptors to 

develop final QSAR model. All the techniques were applied on the 

training set. Initially, the training dataset was filtered to remove the 

highly correlated descriptors (R>0.9) (Supplementary_8) and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

descriptors with low variance (<1%) (Supplementary_7). Both of 

which will not provide enough prediction power to the model. 

Further, descriptors with the duplicate values were also removed 

from the dataset.
[29]

 All the features removal techniques were 

applied using sklearn package of python programming language. 

Subsequently, CfsSubsetEval along with locally predictive attributes 

was used for significant descriptor selection. CfsSubsetEval produces 

subsets of the features that are highly correlated to the class/activity 

while having low intercorrelation. Locally predictive attribute 

identifies locally predictive attributes and iteratively add attributes 

with the highest correlation with the class as long as there is not 

already an attribute in the subset that has a higher correlation with 

the class/activity.
[30–32]

  

 

Table 1. QSAR model with R2. 

Algorithms 
Correlation Coefficient (R2) 

MLR SVR RF RT 

Training set  59.40 58.84 97.1 99.32 
Test Set  55.42 55.65 72.94 52.09 
Cross 
validation  

56.82 55.98 73.21 55.26 

 

 

 

 

 
Fig. 2. Y-randomization test for train data set. (A) Multiple linear regression, (B) Support vector regression, (C) Random Forest, (D) Random tree 

Table 2. Y-Randomization test results 

Algorithm Actual R2 Y-randomized R2 

MLR 0.55 0.019 
SVR 0.66 0.26 
RF 0.97 0.4 
RT 0.99 0.4 
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Fig. 3. Observed vs. Predicted values of train data set. (A) Multiple linear regression, (B) Support vector regression, (C) Random Forest, (D) Random 

tree. 
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2.4. Regression algorithms  

The following algorithms support machine, multiple linear regression, 

random forest regressor and random tree regressor were used to 

build QSAR model (Fig. 2). All the algorithms were implemented 

using Python () using Scikit-learn package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Multiple linear regressions  

It is also called as multiple regressions and it uses several explanatory 

variables to predict the outcomes of response or target variables. M5 

method for linear regression was adopted to build a regression 

equation. This equation is developed by removing smallest 

standardize coefficient until no improvement is observed in estimate 

of error given by Akaike information criterion.
[33,34]

  

 

Table 3. Significant descriptors with their groups 

S.No Descriptors Description Group 

1.  nB  number of Boron atoms  Functional Group Counts  
2.  nBridgeHead  number of bridgehead atoms  Functional Group Counts  
3.  nCconj  number of non-aromatic conjugated C(sp2)  Functional Group Counts  
4.  nR=Cp  number of terminal primary C(sp2)  Functional Group Counts  
5.  nArCOOH  number of carboxylic acids (aromatic)  Functional Group Counts  
6.  nRCONHR  number of secondary amides (aliphatic)  Functional Group Counts  
7.  nArCONHR  number of secondary amides (aromatic)  Functional Group Counts  
8.  nRNH2  number of primary amines (aliphatic)  Functional Group Counts  
9.  nArNH2  number of primary amines (aromatic)  Functional Group Counts  
10.  nN-N  number of N hydrazines  Functional Group Counts  
11.  nArCN  number of nitriles (aromatic)  Functional Group Counts  
12.  nRNO2  number of nitro groups (aliphatic)  Functional Group Counts  
13.  nN(CO)2  number of imides (-thio)  Functional Group Counts  
14.  nSO3  number of sulfonates (thio-/dithio-)  Functional Group Counts  
15.  nP(=O)R3/nPR5  number of phosphoranes (thio-)  Functional Group Counts  
16.  nR=CRX  number of R=CRX  Functional Group Counts  
17.  nCHRX2  nCHRX2  Functional Group Counts  
18.  nOxiranes  number of Oxiranes  Functional Group Counts  
19.  nOxetanes  number of Oxetanes  Functional Group Counts  
20.  nOxolanes  number of Oxolanes  Functional Group Counts  
21.  nPyrroles  number of Pyrroles  Functional Group Counts  
22.  nImidazoles  number of Imidazoles  Functional Group Counts  
23.  nPyridines  number of Pyridines  Functional Group Counts  
24.  nBridgeHead  number of bridgehead atoms  Functional Group Counts  
25.  nCconj  number of non-aromatic conjugated C(sp2)  Functional Group Counts  
26.  nR=Cp  number of terminal primary C(sp2)  Functional Group Counts  
27.  nArCOOH  number of carboxylic acids (aromatic)  Functional Group Counts  
28.  nRCONHR  number of secondary amides (aliphatic)  Functional Group Counts  
29.  nArCONHR  number of secondary amides (aromatic)  Functional Group Counts  
30.  nRNH2  number of primary amines (aliphatic)  Functional Group Counts  
31.  nArNH2  number of primary amines (aromatic)  Functional Group Counts  
32.  nN-N  number of N hydrazines  Functional Group Counts  
33.  nArCN  number of nitriles (aromatic)  Functional Group Counts  
34.  nRNO2  number of nitro groups (aliphatic)  Functional Group Counts  
35.  nN(CO)2  number of imides (-thio)  Functional Group Counts  
36.  nSO3  number of sulfonates (thio-/dithio-)  Functional Group Counts  
37.  nP(=O)R3/nPR5  number of phosphoranes (thio-)  Functional Group Counts  
38.  nR=CRX  number of R=CRX  Functional Group Counts  
39.  B06[O-Cl]  Presence/absence of O – Cl at topological distance 6  2D Atom Pairs  
40.  B07[C-N]  Presence/absence of C – N at topological distance 7  2D Atom Pairs  
41.  B07[N-N]  Presence/absence of N – N at topological distance 7  2D Atom Pairs  
42.  B07[F-Cl]  Presence/absence of F – Cl at topological distance 7  2D Atom Pairs  
43.  B08[S-S]  Presence/absence of S – S at topological distance 8  2D Atom Pairs  
44.  B08[S-Cl]  Presence/absence of S – Cl at topological distance 8  2D Atom Pairs  
45.  B08[Cl-Cl]  Presence/absence of Cl – Cl at topological distance 8  2D Atom Pairs  
46.  B09[C-P]  Presence/absence of C – P at topological distance 9  2D Atom Pairs  
47.  B09[S-Cl]  Presence/absence of S – Cl at topological distance 9  2D Atom Pairs  
48.  B10[C-S]  Presence/absence of C – S at topological distance 10  2D Atom Pairs  
49.  B10[N-Br]  Presence/absence of N – Br at topological distance 10  2D Atom Pairs  
50.  B10[O-S]  Presence/absence of O – S at topological distance 10  2D Atom Pairs  
51.  B10[O-Cl]  Presence/absence of O – Cl at topological distance 10  2D Atom Pairs  
52.  B10[S-F]  Presence/absence of S – F at topological distance 10  2D Atom Pairs  
53.  B10[Cl-Cl]  Presence/absence of Cl – Cl at topological distance 10  2D Atom Pairs  
54.  F06[S-F]  Frequency of S – F at topological distance 6  2D Atom Pairs  
55.  F06[F-Cl]  Frequency of F – Cl at topological distance 6  2D Atom Pairs  
56.  F07[N-N]  Frequency of N – N at topological distance 7  2D Atom Pairs  
57.  F10[C-S]  Frequency of C – S at topological distance 10  2D Atom Pairs  
58.  SAscore  Synthetic Accessibility score  Molecular properties  
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2.6. Support vector regression  

Support vector regression uses the same principle as the support 

vector machine. In the present work poly kernel was used to 

developed to best fit line called hyperplane to predict the continuous 

discrete variable.
[35]

  

 

2.7. Random Forest  

Random forest is also supervised machine learning algorithm uses 

ensemble learning method for regression. Ensemble method 

suggests multiple models/trees trained over same data and 

averaging the results of each tree. For regression task in random 

forest, mean prediction of individual tree was used.
[36]

  

 

2.8. Random tree regression  

Another supervised machine learning tree-based algorithm called 

random tree for examining the prediction capability of the model 

was used. Recursive portioning to split the data and finding the best 

split using reduction in impurity index was used to evaluate the 

model performance.
[37,38]

  

 

2.9. Evaluation of QSAR Model  

For any machine learning model, statistical evaluation is most 

important criterion to check the robustness and stability of the 

prediction model. In the present work, internal and external both 

validation methods used to check the quality of the model. Several 

statistical values like correlation coefficient and cross validated R
2
 

values were calculated. The model was also evaluated on external 

dataset/test dataset to check the accuracy of model on data 

unknown to it. The same metrics were used to assess the model. 

Additionally, to check whether the model is produced by chance or 

not, Y-randomisation test was also performed. In this test, all the 

activity values were shuffled and for these values QSAR model was 

model was developed.
[39,40]

 These shuffling and development were 

done for 50 times to build 50 QSAR model. Mean R
2
 was calculated 

and was compared with actual R
2
.
[41, 42]

 

 

3. Results and Discussions 

In the current research work, QSAR model has been developed using 

four supervised machine learning algorithms including MLR (Multiple 

Linear regression), SVR (Support vector regression), RF (Random 

Forest) and RT (Random tree). The QSAR model has been developed 

to predict inhibitors for Tyrosine kinase enzyme responsible for 

several types of cancer and other immunopathological conditions. 

Total of 2323 types of descriptors belongs to different classes were 

calculated for inhibitors known with biological activity. After applying 

several feature selection and removal techniques the QSAR model 

has been developed with 58 significant descriptors (Table 3) having 

structural relationship in relation to biological activity. The scatter 

plot (Fig. 3) drawn between observed and predicted values for all 

four QSAR models, clearly indicates the closeness between them. 

From the Table 1 it is clear that the R
2
 score obtained for all four-

machine learning algorithm is showing strength in prediction but 

more confidence is observed in the random forest and random tree 

algorithms. The trained model was also evaluated on the testing set, 

which was kept hidden to training set during model development. In 

all models except random tree, test R
2
 was also showing good 

strength. It is also possible that training dataset every time we split 

will have different compounds within and can produce different R
2
 

every time. To overcome this, the training dataset was cross 

validated using cross validation for 5 times and average R
2
 was 

calculated. In all four models, cross validated R
2
 is less because train 

dataset was shuffled five times and average was calculated. In the 

present investigation, mathematical equations were developed for 

MLR and SVR model. These equations (Equation 1 & Equation 2) 

were clearly showing the contributions made by each significant 

descriptor towards the final biological activity of the compounds. 

From both the equation it was very much clear that functional group 

counts and 2D atom pairs were the group of descriptors playing great 

role in describing biological activity of the compounds. Some of the 

descriptors were also showing negative contribution to the activity 

which can be modified to enhance the final biological activity. 

 

Equation 1. Multiple linear regression prediction equation 

pIC50 = -2.19 * nB + -0.6238 * nBridgeHead + 0.0528 * nCconj + -

0.8149 * nR=Cp + -0.4847 * nArCOOH + -0.5916 * nRCONHR + -

0.3679 * nArCONHR + -0.4427 * nRNH2 + 0.1915 * nArCN + -1.5682 * 

nN(CO)2 + 0.5348 * nOxetanes + 0.2972 * nPyrroles + -0.37 * 

nImidazoles + 0.2366 * nPyridines + 0.4248 * nPyrazines + 0.7299 * 

n124-Triazines + -0.1956 * SdsN + 0.3236 * MaxssCH2 + -0.1238 * 

T(P..F) + -1.7037 * B02[S-S] + 0.5305 * B04[F-Cl] + -0.3369 * B05[C-O] 

+ -0.3642 * B05[F-F] + -0.3304 * B06[O-Cl] + 0.8899 * B07[C-N] + 

0.2789 * B07[N-N] + 3.1084 * B07[F-Cl] + 1.1434 * B08[S-S] + 1.2059 

* B08[S-Cl] + 1.1645 * B08[Cl-Cl] + -2.2158 * B09[S-Cl] + 0.6183 * 

B10[C-S] + -0.4178 * B10[O-S] + -1.2293 * B10[S-F] + -0.542 * F06[S-F] 

+ 0.843 * F06[F-Cl] + 0.1523 * F07[N-N] + 0.3151 * SAscore + 4.3003 

 

Equation 2. Support Vector regression equation for prediction 
weights (not support vectors): - 0.2802 * (normalized) nB-0.1501 * 

(normalized) nBridgeHead + 0.0088 * (normalized) nCconj - 0.1888 * 

(normalized) nR=Cp - 0.0502 * (normalized) nArCOOH - 0.1791 * 

(normalized) nRCONHR -0.1387 * (normalized) nArCONHR - 0.079 * 

(normalized) nRNH2 - 0.0106 * (normalized) nArNH2 - 0.1145 * 

(normalized) nN-N + 0.0406 * (normalized) nArCN - 0.1456 * 

(normalized) nRNO2 - 0.1683 * (normalized) nN(CO)2 - 0.165 * 

(normalized) nSO3 + 0.0875 * (normalized) nP(=O)R3/nPR5 - 0.0039 * 

(normalized) nR=CRX + 0.0851 * (normalized) nCHRX2 - 0.1067 * 

(normalized) nOxiranes + 0.0808 * (normalized) nOxetanes + 0.0369 

* (normalized) nOxolanes + 0.0862 * (normalized) nPyrroles - 0.051 * 

(normalized) nImidazoles + 0.0504 * (normalized) nPyridines + 

0.0724 * (normalized) nPyrazines + 0.0932 * (normalized) n124-

Triazines - 0.1983 * (normalized) SdsN + 0.1001 * (normalized) 

SssssSi + 0.0532 * (normalized) MaxssCH2 - 0.326 * (normalized) 

T(P..F) + 0.0227 * (normalized) B01[C-N] + 0.0242 * (normalized) 

B02[N-Cl] - 0.1687 * (normalized) B02[S-S] - 0.001 * (normalized) 

B04[O-Br] + 0.0588 * (normalized) B04[F-Cl] + 0.0346 * (normalized) 

B04[Br-Br] + 0.0445 * (normalized) B05[C-N] - 0.0127 * (normalized) 

B05[C-O] + 0.0016 * (normalized) B05[F-F] - 0.0419 * (normalized) 

B06[O-Cl] + 0.0356 * (normalized) B07[C-N] + 0.0428 * (normalized) 

B07[N-N] + 0.3286 * (normalized) B07[F-Cl] + 0.0917 * (normalized) 
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B08[S-S] + 0.0583 * (normalized) B08[S-Cl] + 0.1164 * (normalized) 

B08[Cl-Cl] + 0.1039 * (normalized) B09[C-P] - 0.2306 * (normalized) 

B09[S-Cl] + 0.0457 * (normalized) B10[C-S] + 0.0526 * (normalized) 

B10[N-Br] - 0.0599 * (normalized) B10[O-S] + 0.0476 * (normalized) 

B10[O-Cl] - 0.0486 * (normalized) B10[S-F] - 0.0767 * (normalized) 

B10[Cl-Cl] - 0.2211 * (normalized) F06[S-F] + 0.3497 * (normalized) 

F06[F-Cl] + 0.1379 * (normalized) F07[N-N] + 0.0909 * (normalized) 

F10[C-S] + 0.0791 * (normalized) SAscore + 0.1205 

 

The model’s performance was found to be considerably worse 

than the original model. The values of R
2
 calculated for all four 

machine learning algorithms. Total 50 randomized models were 

developed and their average R
2
 was considered (Table 2). These 

results are clearly indicating the models are not obtained by chance. 

There is fundamental relationship exist between the structural 

features calculated and final biological activity. 

 

4. Conclusions 

Tyrosine protein kinase plays a significant role in development of 

several types of cancer along with it is also involved in severe 

immunopathological conditions. Several studies are published 

showing the use of computer aided drug design and its uses in the 

development of novel inhibitors against tyrosine kinase. Currently we 

have high computational power with super-fast super vised machine 

learning algorithms available. QSAR model is getting more popularity 

in the novel drug discovery and design as they are relatively easy to 

develop and if evaluated and validated correctly can produce nearly 

true predictions. In the present investigation, QSAR model for 

prediction of inhibitory activity against tyrosine kinase enzyme was 

developed. Once the model is validated through internal and 

external parameters, it can be used to screen a very large database 

within a very short period of time. Such a model was developed using 

supervised machine learning technique and under those four 

different algorithms were applied. A very large database of 

compounds with known inhibitory activity is used for model 

development. Before development several tools were applied to 

filter the insignificant features. Remaining significant features were 

divided in training and testing dataset. Training model was 

statistically evaluated and was tested on test dataset. QSAR model 

developed can be further tested through in-vitro and in-vivo activity. 
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