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               where             are considered the linear and nonlinear functions and                . To 

solve numerically these equations by a numerical method based on the shifted Jacobi-Gauss collocation scheme is used. 

Using this numerical method a system of algebraic equations is constructed. We solve this system with a recursive method in 

the nonlinear case and we solve it in linear case with algebraic formulas. Finally, for the high performance of the suggested 

method three Examples are illustrated. 
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1. Introduction 

A coupled differential-integral equation including the Caputo fractional operator is introduced as follows: 

 

                                                                                            ∫  
 

 
                                                                                                   (1) 

                                                                                            ∫  
 

 
                                                                                                   (2) 

 

the initial condition for this types of equations (1) and (2) are given by: 

 

                                                                        
      ,         

       

 

where                     are the Caputo fractional operators of variable orders                 which are given by:  

 

                                                                     {
              

 

          
∫  

 

 
                           

                                                                    (3) 

 

In the coupled differential-integral equations (1)(2),             and             are indistincted and definited respectively. The main 

reason for choosing these kind of differential-integral equations is because of their role and applications in various fields as computational and 

mathematical sciences,
[14,2,16]

 engineering sciences which are modeled using these types of equations,
[12,23,24]

 physics
[6,11,17]

 and mathematical 

models in chemistry.
[18,26]

 

The main purpose of this paper is to obtain the solution of the coupled differential-integral equations are introduced in (1),(2) by using a 

numerical method that this numerical method is called a shifted Jacobi-Gauss collocation algorithm. This numerical method contains a shifted 

Jacobi polynomials. Obtaining a solution by using different numerical methods was studied by some authors in the mathematical field., that in 

this paper a few numerical methods are mentioned, for Example, in
[13]

 was studied a numerical method based on Chebyshev cardinal wavelets, 
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the new algorithm base on the discretization method to obtain solution of the fractional functional integral equations of variable-order in
[15]

 

was discussed, the explicit and implicit Euler methods,
[28]

 the Legendre wavelets method,
[4]

 the numerical method base on Laplace and 

Sumudu transform methods,
[8]

 the Bezier curve method,
[9]

 the Adams-Bashforth-Moulton scheme,
[5]

 the optimization method
[25]

 and other 

ways.
[19,20,10,21,3]

 

So, this article is divided into four sections as follows. In Section 2, Lemma and definitions of Jacobi polynomials, shifted Jacobi polynomials 

and their properties are introduced. In Section 3, approximation function and the numerical method to obtaining solution of the coupled 

differential-integral equation are described. In order to accuracy of the presented method four examples in Section 4 are described. 

 

2. Some main lemma and definitions about the Jacobi polynomials and shifted Jacobi polynomials 

This section deals with some definitions about the Jacobi polynomials and shifted Jacobi polynomials and Lemma which will be applied in next 

section.  Let                . Then the Jacobi polynomial of degree   is defined by [7]:  

 

                                                    
   

       
   

    
   

   
   

      
   

    
   

                                                               (4) 

 

where for       the functions   
   

    and   
   

    are defined by:  

 

                                                              
   

        
   

    
            

 
                                                                                                                          (5) 

 

and the coefficients   
   

   
   

   
   

 are given by:  

 

                                    
   

 
                    

               
   

   
 

                 

                       
   

   
 

                    

                      
                                               (6) 

 

Also, the Jacobi polynomial has a finite series as follows:  

 

                                                    
   

    
        

            
∑   

   (
 
 
)

            

        
 
   

 
                                                                                                        (7) 

 

where      is the gamma function.   Let       . Then the shifted Jacobi polynomial of degree   is defined by[7]:  

 

  
   

      
   

     ⏟  
           

  
        

            
∑   

   (
 
 
)

            

        
       

        

          
∑   

                      

                
                          (8) 

 

Also, the shifted Jacobi polynomial respect to the weight function                  is orthogonal, that the orthogonality condition is 

given as:  

                                       
   

      
   

            ∫  
 

 
         

   
     

   
      {

      
          

             
                                                                (9) 

 

where       is the inner product.   Let             . Then for any      the Caputo fractional operator of variable order          is 

given by[27]:  

                                                                               
  

{
 

 
             

      

            
              

  

                    

                                                                         (10) 

 

So, applying the relation (10) on (8), for       we obtain:  

 

               
   

    
        

          
∑   
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                                                          (11) 
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                                                                                          (12) 

 

where     
   

 
        

          
              

            
 

            

                
 and     

   
 

        

          
                     

                
.   
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3. The function approximation and proposed method algorithm 

Due to the orthogonality condition is presented in (9) about the shifted Jacobi polynomial, any                     can be approximated in 

terms of the shifted Jacobi polynomial as follows:  

 

                                                                                                ∑   
       

   
                                                                                                                    (13) 

                                                                                                ∑   
       

   
                                                                                                                    (14) 

 

considering the first   sentence of the relations (13), (14), we have:  

                                                                                                   ∑   
       

   
                                                                                                       (15) 

                                                                                                   ∑   
       

   
                                                                                                       (16) 

 

where the coefficients       are calculated as:  

                                                                                   
   

                  
∫  

 

 
         

   
          

   
   

                                                                                   (17) 

                                                                                   
   

                  
∫  

 

 
         

   
          

   
   

                                                                                   (18) 

 

Theorem 1.  Let      be as an approximation of the function      , that it satisfy in the equation(1) and the following conditions for 

            hold:  

 

                                                                                                                                                                                                 (19) 

                                                                                                                                                                                                (20) 

 

Then the sequence      to       converges, that       is the exact solution of the equation(1),   

Proof. Suppose       be a residual function, which is defined as:  

 

                                                                                                ∫  
 

 
                   

                                                                                                  ∫  
 

 
                                                                          (21) 

 

Then, we have:  

                                                                           ∫  
 

 

                         

 

   
 

          
∫  

 

 
                                                             

                           ∫  
 

 
                         

 

 
 

          
∫  
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∫  

 

 
                                                  

                             ∫  
 

 
                                                                                                                                                                                      (22) 

 

Using (19), (20), we get:  

                
   

       

          
∫  

 

 

                                                    

                 ∫  
 

 
                        

                 

               
  

           

          
∫  
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So,                   when    , then       a Cauchy sequence in         and         is complete, therefore the sequence       

is convergent that is  

 

                                                                                                  
   

                                                                                                                                  (24) 

where  

 

                                                                                          ∫  
 

 
                   

                                                               ∫  
 

 
                                                                                     (25) 

The proof is complete.  

 

Like the Theorem 1 can be considered a similar process for the equation (2).  

Theorem 2.([22]) Suppose      be belongs to the space             that         is defined by: 

  

                                                              ∑   
                

  
 

                                                               (26) 

 

 and      as the best approximation of   is considered. Then the following inequality is hold:  

 

                                                                       
                                                                                                  (27) 

                                                       
 

 
                      

                                                                            (28) 

 

 Theorem 3.  Suppose       is belongs to the space             and    is the best approximation of      . Then we have:  

 

                                               
       

   
 
       
 

          
         

   
        
                                                                                     (29) 

                                               
     

 
      

   
 
       
 

          
       

 

 
     

   
        
                                                               (30) 

 

here               is considered.   

 

Proof. Using (1), we obtain  

                                                               ∫  
 

 
                        

           
 

          
∫  

 

 
                                             ∫  

 

 
                        

          
 

          
 ∫  

 

 
                                                            

           ∫  
 

 
                                                                                                                                                                      (31) 

 

 we use                             for Eq.(??), we have:  

                    
 

          
 ∫  

 

 
                                                            

           ∫  
 

 
                        

           
        

          
                                               ∫  

 

 
                        

           
        

          
                                                                

           
                    

          
                                                                                                                                          (32) 

 

 so, we employ Eqs.(27),(28) on the relation (32), we get:  

                      
       

   
 
       
 

          
         

   
        
                                                                                                              (33) 

                      
     

 
      

   
 
       
 

          
       

 

 
     

   
        
                                                                                        (34) 

 

 The desired result is achieved.  
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Theorem 4.  Suppose       is belongs to the space             and     is the best approximation of      . Then we have:  

 

                                        
        

   
 
       
 

          
          

   
        
                                                                                          (35) 

 

                                        
      

 
 
     

   
 
       
 

          
        

 

 
     

   
        
                                                                    (36) 

 

 Proof. The proof of this Theorem is similar to the proof of the Theorem 3.  

 

3.1. The shifted Jacobi-Gauss collocation algorithm 

This subsection describes the proposed method for solving Eqs.(1), (2). By substituting the relations (15) and (16) in Eqs.(1), (2), we obtain  
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]  
 

  
(∑     
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⏟                                                      
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                                                                 (37) 
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   ]  ∑     
     

       ∫ ∑     
               

   
 

 ⏟                                                      

                                                  ∑     
    

        ∑     
     

        

  

 

                                                  ∑   
     

              
   

    ∑   
        

   
    ∑   

     ∫  
 

 
  

   
                                                            (38) 

 

by applying Eqs.(11),(12) on the equations (37) and (38), we have:  
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   ∑   

         
   

         ∑   
   ∑     

         
   

     ∑   
   ∑   

         
   

                                     (39) 

 

                                 ∑   
   ∑   

         
   

         ∑   
   ∑     

         
   

     ∑   
   ∑   

         
   

                                      (40) 

 

where,     
   

                            

                    
.  

Now we calculate the equations (39) and (40) in points        
        

 
 which is the nodes of the standard Jacobi-Gauss interpolation in the 

interval        and their introduced in [7]. Then for           we get:  
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   ∑   

         
   

      
       

 ∑   
   ∑     
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   ∑   
         

   
      

                

               ∑   
       

   
    ∑   

        
   

                                                                                                                                 (41) 
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   ∑   

         
   

      
       

 ∑   
   ∑     
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   ∑   
         

   
      

                

               ∑   
       

   
    ∑   

        
   

                                                                                                                                 (42) 

 

By solving these equations together with the initial conditions, the uncertain coefficients       are obtained. When the functions             

are nonlinear, in this case the equations (41) and (42) changes to the following equations:  

 

 ∑   
   ∑   

         
   

      
       

 ∑   
   ∑     
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   ∑   
         

   
      

                                       

 ∑   
       

   
    ∑   

        
   

                                                                                                                                               (43) 

 

 ∑   
   ∑   

         
   

      
       

 ∑   
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   ∑   
         

   
      

                                       

 ∑   
       

   
    ∑   

        
   

                                                                                                                                               (44) 

 

 By applying a recursive method on the relations (43) and (44) can be obtained the uncertain coefficients      . 
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4.  Numerical Examples 

This section examines three examples by using the proposed method to show its performance and accuracy. 

 

4.1. Example 1 

We consider the following coupled differential-integral equation of order                               :  

 

                             ∫  
 

 
               

                                                                                                                                                                                               (45) 

                             ∫  
 

 
               

                                                                                                                                                                                               (46) 

 

where                                                 and                                   . The analytical 

solutions for these questions are                            . This Example is solved by the proposed method and the results of the 

approximate and exact solutions are shown in the Figs. 1 and 2. In the Tables 1 and 2, the absolute error between the approximate and 

analytical solutions are displayed. 

 

 
Fig. 1. Numerical and exact solutions of the Example 1 with 

𝜚  𝑥         𝑥 and for the values of the parameters 

𝑛 𝜇  
 

 
 𝜈  

 

4
 

 

 
Fig. 2. Numerical and exact solutions of the Example 1 with 

𝜚  𝑥         𝑥  and for the values of the parameters 

𝑛 𝜇  
 

 
 𝜈  

 

4
 

 

Table 1. The absolute error for the values of the parameters 𝑛 𝜇  
 

 
 𝜈  

 

4
 and 𝜚  𝑥         𝑥 for Example 1   

-34-5 𝒙 
|𝒑𝟏 𝒙  𝒑𝟏 𝒏 𝒙 |   |𝒑𝟏 𝒙  𝒑𝟏 𝒏 𝒙 |  

 𝒏  𝟖   𝒏  𝟏𝟔   𝒏  𝟑𝟐   𝒏  𝟔𝟒  
        96 85𝑒   5     99 77𝑒   6       7 9𝑒   7          𝑒   8 
        86589𝑒   5     88993𝑒   6     9   3𝑒   7     939  𝑒   8 
  3     77  5𝑒   5     7965 𝑒   6     8 9 8𝑒   7     8  3 𝑒   8 
        6895 𝑒   5     7   9𝑒   6     73  5𝑒   7     75   𝑒   8 
  5     6  39𝑒   5     63 33𝑒   6     6 967𝑒   7     669  𝑒   8 
  6     539 7𝑒   5     55688𝑒   6     57 67𝑒   7     59 8 𝑒   8 
  7      73 3𝑒   5      89  𝑒   6     5 573𝑒   7     5    𝑒   8 
  8        97𝑒   5       757𝑒   6        5 𝑒   7      578 𝑒   8 
  9     35778𝑒   5     37   𝑒   6     38 73𝑒   7     39869𝑒   8 

 

Table 2. The absolute error for the values of the parameters 𝑛 𝜇  
 

 
 𝜈  

 

4
 and 𝜚  𝑥         𝑥  for Example 1   

-34-5 x 
|𝒑𝟐 𝒙  𝒑𝟐 𝒏 𝒙 |   |𝒑𝟐 𝒙  𝒑𝟐 𝒏 𝒙 |  

 n=8   n=16   n=32   n=64  

           56𝑒   5        66𝑒   7       9  𝑒   9     3    𝑒      
         6 5 𝑒   7     58973𝑒   9     7   8𝑒         86639𝑒   3  
  3     68 3 𝑒   7     75878𝑒   9     8  8 𝑒         9 869𝑒   3  
          8  𝑒   7      8 38𝑒   9     5 53 𝑒         6   3𝑒   3  
  5       7 7𝑒   7      86  𝑒   9     3 93 𝑒         37658𝑒   3  
  6       6  𝑒   7      5  5𝑒   9      7989𝑒            7 𝑒   3  
  7      53  𝑒   7      6759𝑒   9      8  6𝑒           393𝑒   3  
  8       57 𝑒   7        39𝑒   9      3 73𝑒            9 𝑒   3  
  9        96𝑒   7       383𝑒   9       663𝑒            53𝑒   3  
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4.2. Example 2 

Consider the following coupled differential-integral equation with           
 

 
        

 

 
:  

 

                             ∫  
 

 
                    

  

4
 

  

 
  

                                                                                                                                                                                               (47) 

 

                             ∫  
 

 
                    

  

4
 

  

 
  

                                                                                                                                                                                               (48) 

 

the exact solutions of Eqs.(47),(48) are                            . This Example is solved by the proposed method and the results 

of the approximate and exact solutions are shown in the Figs. 3 and 4. In the Tables 3 and 4, the absolute error between the approximate and 

analytical solutions are displayed. 

 

 

 

 

 
Fig. 3. Numerical and exact solutions of the Example 2 with 

𝜚  𝑥      
𝑥

 
  and for the values of the parameters 𝑛 𝜇  

 

 
 𝜈  

 

4
 

 

 
Fig. 4. Numerical and exact solutions of the Example 2 with 

𝜚  𝑥  
𝑥

 
 and for the values of the parameters 𝑛 𝜇  

 

 
 𝜈  

 

4
 

Table 3. The absolute error for the values of the parameters 𝑛 𝜇  
 

 
 𝜈  

 

4
 and 𝜚  𝑥      

𝑥

 
  for Example 2 

-34-5 x 
|𝒑𝟏 𝒙  𝒑𝟏 𝒏 𝒙 |   |𝒑𝟏 𝒙  𝒑𝟏 𝒏 𝒙 |  

 n=8   n=16   n=32   n=64  

            3𝑒   5      639𝑒   6       73𝑒   7      7 7𝑒   8  
         8 95𝑒   5     8586𝑒   6     9 87𝑒   7     9595𝑒   8  
  3      6   𝑒   5     6669𝑒   6     7 36𝑒   7     76  𝑒   8  
           56𝑒   5      883𝑒   6     53 7𝑒   7     576 𝑒   8  
  5       8 7𝑒   5     3  3𝑒   6     36 6𝑒   7       37𝑒   8  
  6      3 9𝑒   5      685𝑒   6       58𝑒   7       39𝑒   8  
  7      99 8𝑒   5       65𝑒   6      6 9𝑒   7      96 𝑒   8  
  8      86 9𝑒   5     8959𝑒   6     9 75𝑒   7     9598𝑒   8  
  9      7 79𝑒   5     776 𝑒   6     8 5 𝑒   7     83 7𝑒   8  

 

Table 4. The absolute error for the values of the parameters 𝑛 𝜇  
 

 
 𝜈  

 

4
 and 𝜚  𝑥  

𝑥

 
 for Example 2  

-34-5 x 
|𝒑𝟐 𝒙  𝒑𝟐 𝒏 𝒙 |   |𝒑𝟐 𝒙  𝒑𝟐 𝒏 𝒙 |  

 n=8   n=16   n=32   n=64  

        8 98𝑒   5     6887𝑒   6    355 8𝑒   7       75𝑒   8  
       83 78𝑒   5    9 9  𝑒   6      7 9𝑒   7     9 66𝑒   8  
  3     8 95𝑒   5    57 79𝑒   6    6573 𝑒   7    7  36𝑒   8  
        5 6 𝑒   5     33  𝑒   6    3 596𝑒   7    39996𝑒   8  
  5     8  8 𝑒   5    9 6 9𝑒   6    993  𝑒   7     7 5 𝑒   8  
  6    56569𝑒   5    63   𝑒   6    6989 𝑒   7    769 3𝑒   8  
  7     33335𝑒   5    38678𝑒   6      3  𝑒   7    5 3  𝑒  8 
  8     5 89𝑒   5     939 𝑒   6     3676𝑒   7     83 9𝑒   8  
  9          𝑒   5     6  7𝑒   6     89  𝑒   7      987𝑒   8  
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4.3. Example 3 

We describe the following nonlinear coupled differential-integral equation with                          :  

 

                             ∫  
 

 
            

  

  
 

  

  
   

      

                                                                                                                                                                                               (49) 

                             ∫  
 

 
           

   

 
              

                                                                                                                                                                                               (50) 

 

the exact solutions of Eqs.(49),(50) are       
 

 
           . This Example is solved by the proposed method and the results of the 

approximate and exact solutions are shown in the Figs. 5 and 6. In the Tables 5 and 6, the absolute error between the approximate and 

analytical solutions are displayed. 

 

5. Conclusions 

This article is focused on the coupled differential-integral equation including the Caputo fractional operator of variable-orders and it is 

proposed a numerical method based on the shifted Jacobi - Gauss collocation scheme to obtain the solution of the coupled differential-integral 

 

 
Fig. 5. Numerical and exact solutions of the Example 3 with 

𝜚  𝑥  𝑒𝑥  𝑥  and for the values of the parameters 

𝑛 𝜇  
 

 
 𝜈  

 

4
 

 

 
Fig. 6. Numerical and exact solutions of the Example 3 with 

𝜚  𝑥       𝑥  and for the values of the parameters 

𝑛 𝜇  
 

 
 𝜈  

 

4
 

 
Table 5. The absolute error for the values of the parameters 𝑛 𝜇  

 

 
 𝜈  

 

4
 and 𝜚  𝑥  𝑒𝑥  𝑥  for Example 3 

-34-5 x 
|𝒑𝟏 𝒙  𝒑𝟏 𝒏 𝒙 |   |𝒑𝟏 𝒙  𝒑𝟏 𝒏 𝒙 |  

 n=8   n=16   n=32   n=64  

        35   𝑒   5         8𝑒   6      9  3𝑒   7     5656 𝑒   8  
         9957𝑒   5      5953𝑒   6        6 𝑒   7      859 𝑒   8  
  3     88 38𝑒   5     93  5𝑒   6     9859 𝑒   7        7 𝑒   8  
        69   𝑒   5     7366 𝑒   6     78 65𝑒   7     83 56𝑒   8  
  5     53335𝑒   5     57 55𝑒   6     6 9  𝑒   7     65  6𝑒   8  
  6        7 𝑒   5      3 53𝑒   6      6388𝑒   7      978 𝑒   8  
  7     9   𝑒   5     3 7 5𝑒   6     3 356𝑒   7     37   𝑒   8  
  8      5 6𝑒   5       5  𝑒   6       6 9𝑒   7      68 5𝑒   8  
  9      37  𝑒   5      5 7 𝑒   6      69 5𝑒   7      865 𝑒   8  

 
Table 6. The absolute error for the values of the parameters 𝑛 𝜇  

 

 
 𝜈  

 

4
 and 𝜚  𝑥       𝑥  for Example 3 

-34-5 x 
|𝒑𝟐 𝒙  𝒑𝟐 𝒏 𝒙 |   |𝒑𝟐 𝒙  𝒑𝟐 𝒏 𝒙 |  

 n=8   n=16   n=32   n=64  

        9699 𝑒   5       5  𝑒   6      8 87𝑒   7      37 9𝑒   8  
        757  𝑒   5     8 9 7𝑒   6     86 99𝑒   7     9 558𝑒   8  
  3     556 7𝑒   5     6 5 9𝑒   6     655 7𝑒   7     7 58 𝑒   8  
        36799𝑒   5       398𝑒   6      6 7 𝑒   7     5 8  𝑒   8 
  5      9 68𝑒   5      3 6 𝑒   6      783 𝑒   7     3  77𝑒   8  
  6      75 𝑒   5      67  𝑒   6       8 8𝑒   7       95 𝑒   8 
  7    8755 𝑒   5     9  38𝑒   6     95   𝑒   7     98838𝑒   8  
  8     73568𝑒   5     7695 𝑒   6     8   8𝑒   7     839  𝑒   8  
  9    6 8  𝑒   5     63878𝑒   6     67 3 𝑒   7     7  6 𝑒   8  
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equation. Also, in this paper about the convergence and an upper bound on the error are discussed. Some numerical Examples have been 

showed in order to display the high exactness of the suggested method. 
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