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1. Introduction 

The Volterra integral equations have many important applications in many fields of sciences like mathematics and engineering. VIE can be 

utilized to model many physical systems in continuum mechanics of material, population dynamics, financial mathematics, spread of 

epidemics, fluid dynamics, diffusion problems and electrostatics problems.[1-22] etc. Many efficient methods have been developed over the 

years to approximate the Volterra integral equations.[2-9] More detail can be found in the book.[22] In the present work the Laplace transform 

based method like[13,17] is extended to solve Volterra integral equations of the following form 

 

                                                   𝑦(𝑡) = ∫ 𝐾(𝑡 − 𝑠)𝑦(𝑠)𝑑𝑠 + 𝑓(𝑡)
𝑡

0
                (1) 

 

where 𝐾 denotes kernel function of convolution type, and 𝑓(𝑡) is given function. 

 

2. Description of the method for VIE 

By applying the Laplace transforms to equation (1), and let 𝑌(𝑠) be the solution of the transform problem. The solution of VIE in equation (1) 

can be computed by applying the inverse Laplace transform to get the following 

 

                                                      𝑦(𝑡) =
1

2𝜋𝑖
∫ 𝑌(𝑠)𝑒𝑠𝑡𝑑𝑠

𝑐+𝑖∞

𝑐−𝑖∞
          (2) 

 

A contour can be used to approximate the line 𝑐 − 𝑖∞𝑡𝑜 𝑐 + 𝑖∞, for example parabolic or hyperbolic. The above integrand will 

beexponentially decayed 𝑖𝑓𝑐 − 𝑖∞ 𝑡𝑜 𝑐 + 𝑖∞ can be deformed into the left half plane. In such a case the parametric equation of hyperbola due 

to[17] is defined by the following equation, 

 

                                      𝑠 = 𝜔 + 𝜆(1 − sin(𝜎 − 𝑖𝜇)), − ∞ < 𝜇 < ∞    ( 𝛤)                         (3) 
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Γ represents left branch of hyperbola and is defined by the following equation 

 

                                                      (
𝑥−𝜔−𝜆

𝜆 sin 𝜎
)2 − (

𝑦

𝜆 cos 𝜎
)2 = 1                            (4) 

 

So the solution of problem (1) defined in equation (2) is now reduced to the following form, 

 

                                                          𝑦(𝑡) =
1

2𝜋𝑖
∫ 𝑌(𝑠)𝑒𝑠𝑡𝑑𝑠

𝛤
                             (5) 

 

Where the Γ denotes the parametric form of the path defined in equation (3) we write 𝑠 = 𝑠(𝜇) the above equation (5) reduced to the 

following form, 

             

                                                    𝑦(𝑡) =
1

2𝜋𝑖
∫ 𝑌(𝑠(𝜇))𝑒𝑠(𝜇)𝑡𝑠′(𝜇)𝑑µ

𝛤
            (6) 

 

Where 𝑌(𝑠(𝜇)) = 𝑌(𝑠) and using equal weight quadrature rule with 𝐾 > 0, 𝑠𝑗 = 𝑠(𝜇𝑗), 𝑠′
𝑗 = 𝑠′ (𝑢𝑗), the equation (6) can be approximated by 

 

                                                     𝑦𝑁(𝑡) =
𝐾

2𝜋𝑖
∑ 𝑌(𝑠𝑗

𝑁
𝑗=−𝑁 )𝑒𝑠𝑗(𝑡)𝑠𝑗

′             (7) 

 

3. Numerical Experiments 

The present numerical scheme is now applied for solving various types of Volterra integral equations linear as well as nonlinear of convolution 

type. All the numerical result obtained using the following values of optimal parameters derived by the authors in McLean W et al.,[17] given 

by 𝑡 ∈ [𝑡0 = 0.01, 𝑇 = 5], 𝜃 = 0.1, 𝜎 = 0.3812, 𝜏 = (
𝑡0

𝑇
), 𝑏 = cos ℎ−1(

1

𝜃𝜏 sin(𝜎)
), 𝑟 = 0.3431,  𝑟′ = 2𝜋𝑟, 𝐾 =

𝑏

𝑁
,  𝜔 = 0.2, 𝜇 =  𝑟′ (

(1−𝜃)

𝑏
), 𝜆 =

 
𝜃𝑟′𝑁

𝑏𝑇
, 𝜌(𝑟) =

𝜃𝑟′𝜏 sin(𝜎−𝑟)

𝑏
, 𝑙(𝜌𝑟𝑁) = max (1, log (

1

𝑁

𝜌𝑟 
)), 𝑟′ = 2𝜋𝑟 ∈ ≅ 𝑙(𝜌𝑟𝑁)𝑒−𝜇𝑁. 

 

3.1. Problem 

                                                                                             𝑦(𝑡) = 𝑡 +
4

3
𝑡

3

2 − ∫
𝑦(𝑥)

√𝑡−𝑥

𝑡

0
𝑑𝑥          (8) 

 

It is easily to show that the Laplace transform of equation (8) is(𝑠) = 1/𝑠2, which can be used in equation (7) to obtain the numerical solution 

𝑦𝑁 for different values of quadrature points 𝑁. The accuracy and performance of the present numerical scheme is tested in term of actual 

error 𝐸 and compared with the error estimate ∈ of the numerical scheme at time 𝑡 = 1 where the exact solution is 𝑦(𝑡) = 𝑡, Babolian E.,[16] 

the hyperbolic path is used with its optimal values discussed above. It can be seen from Table 1 and Fig. 1 that the present method is highly 

accurate as compared to the methods discussed[16] for this problem. 

 

3.2. Problem 

                                                                                              𝑦(𝑡) = ∫ 𝑒(𝑡+𝑥)𝑦(𝑥)
𝑡

0
𝑑𝑥 = 𝑡𝑒𝑡           (9) 

 

The Leibnitz generalized formula (see for example[18]) can be used to reduce the problem (3) to form  

 
Fig. 1. Actual error versus quadrature nodes 𝑁 at time 𝑡 = 1 

corresponding to problem 1. 

Table 1. Comparison of the solutions for various values of 
quadrature nodes 𝑁 of the present numerical scheme at time 𝑡 =  1 
corresponding to problem 1. 
𝑵      𝑬    ∈ 
5 0.2466 0.0447 
10 0.0182 0.0130 
20 0.0012 0.0013 
40 2.1061𝑒−006 1.9533𝑒−005  
80 1.6249𝑒−010 1.1786𝑒−008  
100 3.8858𝑒−013 3.7104𝑒−010  
150 2.2259𝑒−015 9.9729𝑒−014  
200 3.1142𝑒−015 4.0395𝑒−017 

     .[16]  3.120𝑒−002  
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                                                                                            𝑦(𝑡) + ∫ 𝑒(𝑥−𝑡)𝑦(𝑥)
𝑡

0
𝑑𝑥 = 𝑒−𝑡(1 + 𝑡)                                        (10) 

 

Applying the Laplace transform to equation (10) we get          

𝑌(𝑠) =
1

(1+𝑠)
   This transformed value of the solution 𝑦(𝑡)  can be used in (7) to get the numerical solution of problem (10). The exact solution 

of this problem is(𝑡) = 𝑒−𝑡 . The actual error 𝐸, error estimate ∈ of the numerical scheme are shown in Table 2 and Fig. 2 for different choices 

of quadrature nodes 𝑁 and time 𝑡 = 1the results of the present scheme are compared with the results for the methods in.[15,19]  

 

3.3. Problem 

Consider the nonlinear VIE.[16] 

                                                                                                     𝑒2𝑡 − 𝑒𝑡 = ∫ 𝑒(𝑡−𝑥)𝑡

0
𝑦2(𝑥)𝑑𝑥                                         (11) 

let us denote 𝑦2 (𝑥) = 𝑣(𝑥), then the equation (11) reduces to 

 

                                                                                                        𝑒2𝑡 − 𝑒𝑡 = ∫ 𝑒(𝑡−𝑥)𝑡

0
𝑣(𝑥)𝑑𝑥        (12) 

 

by applying the Laplace transform to equation (12) we have the following value of the transformed solution, 

                                                                                                                     𝑉(𝑠) =
1

𝑠−2
                                                           (13) 

                                                                                                                 𝑦𝑁(𝑡) = √𝑣𝑁(𝑡)                                         (14) 

 

Where 𝑦𝑁(𝑡) can be computed from equation (7) where the exact solution of the problem (11) is 𝜇(𝑡) = 𝑒𝑡the actual solution error 𝐸 and the 

estimated errors ∈ are shown in Table 3 and Fig. 3. The results of the present method are compared with the.[16] at time 𝑡 =
1

8
 for this 

particular problem, it can be seen this numerical method is highly accurate. 

 

3.4. Problem 

Consider the nonlinear VIE.[10] 

                                                                                                 ∫ 𝑒(𝑡−𝑥)𝑡

0
ln(𝑦(𝑥))𝑑𝑥 = 𝑒𝑡 − 𝑡 − 1       (15) 

 
Fig. 2. Actual error versus quadrature nodes 𝑁 at time 𝑡 = 1 

corresponding to problem 2. 

 

 
Fig. 3. Actual error versus quadrature nodes 𝑁 at time 𝑡 = 1 

corresponding to problem 3. 

 

 

Table 2. Numerical solution: comparison of actual error of the present 
scheme, its error estimate for various values of quadrature nodes, at 
time 𝑡 =  1 corresponding to problem 2. 

𝑵      𝑬       ∈ 
5 0.4577 0.0447 
10 0.0410 0.0130 
20 7.1677𝑒−004 0.0013 
40 1.7981𝒆−𝟎𝟎𝟕 1.9533𝑒−005 
80 5.1235𝒆−𝟎𝟏𝟒 1.1786𝑒−008 
100 4.1003𝒆−𝟎𝟏𝟓 3.7104𝑒−010 

150 9.1056𝒆−𝟎𝟏𝟓 9.9729𝑒−014 

200 1.4103𝒆−𝟎𝟏𝟒 4.0395𝑒−017 

.[15]  9.310𝑒−004  

.[19]  4.700 𝑒−006  

 

Table 3. Numerical solution: comparison of actual error of the present 
scheme, its error estimate for various values of quadrature nodes, at time 
𝑡 =  1 corresponding to problem 3. 

𝑵     𝑬    ∈ 
5 0.1292 0.0447 
10 0.0129 0.0130 
20 7.3658𝑒−005 0.0013 
40 6.2040𝑒−006 1.9533𝑒−005  
80 1.0153𝑒−010 1.1786𝑒−008  
100 4.5356𝑒−013 3.7104𝑒−010  
150 1.2707𝑒−013 9.9729𝑒−014  
200 2.9845𝑒−013 4.0395𝑒−017 

.[16]  3.280𝑒−002  
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Let  ln(𝑦(𝑥)) = 𝑣(𝑥), the equation (15) become,  

 

                                                                                                 ∫ 𝑒(𝑡−𝑥)𝑡

0
v(x) 𝑑𝑥 = 𝑒𝑡 − 𝑡 − 1        (16) 

 

taking Laplace of equation (16) we have, 

 

                                                                                                                      𝑉(𝑠) =
1

𝑠2
                                                                            (17) 

 

                                                                                                                  𝑦𝑁(𝑡) = 𝑒𝑣𝑁(𝑡)                                                          (18) 

 

where 𝑣𝑁(𝑡) can be computed using equation (7) and the exact solution is given as 𝜇(𝑡) = 𝑒𝑡. This problem is solved by the present Laplace 

transform based method and the results are shown in Table 4 and Fig. 4. The actual error 𝐸, the error estimate ∈ is computed for different 

values of quadrature nodes 𝑁. It can be observed that for large range of quadrature nodes the actual error and the error estimate well agreed. 

 

4. Conclusions 

In this present work a numerical scheme is implemented for solving the VIE which is based on Laplace transform. The numerical coupled 

Laplace transform with quadrature rule and the resultant numerical scheme highly accurate and efficient for the numerical solution of VIE. The 

numerical scheme is compared with other available methods and it is found that the present method having more accuracy than the large 

range interpolation, integral expansion, operational matrix with block-pulse function and piecewise constant orthogonal function, and optimal 

homotopy asymptotic method. The method is applicable to Volterra integral equations of convolution type. 
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