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on the double-diffusive convection in Rivlin-Ericksen viscoelastic fluid through permeable media. Following the 
linearized stability theory, Boussinesq approximation and normal mode analysis, the dispersion relation is obtained. 
The stationary convection, stability of the system and oscillatory modes are discussed. For the case of stationary 
convection, it is found that the stable solute gradient and rotation have stabilizing effects on the system. In the 
presence of rotation, the medium permeability has a destabilizing (or stabilizing) effect and magnetic field has 
stabilizing (or destabilizing) effect on the system, whereas, in the absence of rotation, medium permeability and 
magnetic field have destabilizing effect and stabilizing effect on the system, respectively. The kinematic viscoelasticity 
has no effect for stationary convection. The kinematic viscoelasticity, rotation, stable solute gradient and magnetic 
field introduce oscillatory modes in the system, which were non-existent in their absence. The sufficient conditions for 
the non-existence of over stability are also obtained. 
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1. Introduction 

The theoretical and experimental results on thermal convection in a fluid layer, in the absence and presence of rotation and magnetic field 

have been given by Chandrasekhar.[1] Thermal convection is the most convective instability when crystals are produced from single element 

like silicon. However, gallium arsenide and other semi-conductors which require crystals made from compounds of elements are beginning to 

take on a prominent position in modern technologies. Hence, at present, there is a strong industrial demand for understanding the additional 

effects that can occur in the solidification of a mixture, which do not take place in one component system. The problem of thermohaline 

convection in a layer of fluid heated from below and subjected to a stable salinity gradient has been considered by Veronis.[2] The buoyancy 

force can arise not only from density differences due to variations in temperature but also from those due to variations in solute 

concentration. Double-diffusive convection problems arise in oceanography (salt fingers occur in the ocean when hot saline water overlies 

cooler fresher water which believed to play an important role in the mixing of properties in several regions of the ocean), limnology and 

engineering. The migration of moisture in fibrous insulation, bio/chemical contaminants transport in environment, underground disposal of 

nuclear wastes, magmas, groundwater, high quality crystal production and production of pure medication are some examples where double-

diffusive convection is involved. Examples of particular interest are provided by ponds built to trap solar heat (Tabor and Matz[3]) and some 

Antarctic lakes (Shirtcliffe).[4] The physics is quite similar in the stellar case in that helium acts like salt in raising the density and in diffusing 

more slowly than heat. The conditions under which convective motions are important in stellar atmospheres are usually far removed from 

consideration of a single component fluid and rigid boundaries, and therefore it is desirable to consider a fluid acted on by a solute gradient 

and free boundaries. 

The flow through porous media is of considerable interest for petroleum engineers, for geophysical fluid dynamicists and has importance 

in chemical technology and industry. An example in the geophysical context is the recovery of crude oil from the pores of reservoir rocks. 

Among the applications in engineering disciplines one can find the food processing industry, chemical processing industry, solidification and 

centrifugal casting of metals. Such flows has shown their great importance in petroleum engineering to study the movement of natural gas, oil 

and water through the oil reservoirs; in chemical engineering for filtration and purification processes and in the field of agriculture engineering 

to study the underground water resources, seepage of water in river beds. The problem of thermosolutal convection in fluids in a porous 

 

 

pkdureja@gmail.com


 

 
31 

Pardeep Kumar   Numerical Analysis and Applicable Mathematics 

Numer. Anal. Appl. Math., 2022, 3(6), 30-38. 

 

medium is of importance in geophysics, soil sciences, ground water hydrology and astrophysics. The study of thermosolutal convection in fluid 

saturated porous media has diverse practical applications, including that related to the materials processing technology, in particular, the 

melting and solidification of binary alloys. The development of geothermal power resources has increased general interest in the properties of 

convection in porous media. The scientific importance of the field has also increased because hydrothermal circulation is the dominant heat-

transfer mechanism in young oceanic crust (Lister).[5] Generally it is accepted that comets consists of a dusty ‘snowball’ of a mixture of frozen 

gases which in the process of their journey changes from solid to gas and vice- versa. The physical properties of comets, meteorites and 

interplanetary dust strongly suggest the importance of porosity in the astrophysical context (McDonnel).[6] 

The effect of a magnetic field on the stability of such a flow is of interest in geophysics, particularly in the study of Earth’s core where the 

Earth’s mantle, which consists of conducting fluid, behaves like a porous medium which can become convectively unstable as a result of 

differential diffusion. The other application of the results of flow through a porous medium in the presence of a magnetic field is in the study 

of the stability of a convective flow in the geothermal region. Also the magnetic field in double-diffusive convection has its importance in the 

fields of engineering, for example, MHD generators and astrophysics particularly in explaining the properties of large stars with a helium rich 

core. Stommel and Fedorov[7] and Linden[8] have remarked that the length scales characteristics of double-diffusive convective layers in the 

ocean may be sufficiently large that the Earth’s rotation might be important in their formation. Moreover, the rotation of the Earth distorts the 

boundaries of a hexagonal convection cell in a fluid through a porous medium and the distortion plays an important role in the extraction of 

energy in the geothermal regions. Brakke[9] explained a double - diffusive instability that occurs when a solution of a slowly diffusing protein is 

layered over a denser solution of more rapidly diffusing sucrose. Nason et al.[10] found that this instability, which is deleterious to certain 

biochemical separations, can be suppressed by rotation in the ultracentrifuge. The fluid was considered to be Newtonian in the above studies. 

Many common materials such as paints, polymers, plastics and more exotic one such as silicic magma, saturated soils and the Earth’s 

lithosphere behaves as viscoelastic fluids. Due to the growing use of these viscoelastic materials in various manufacturing and processing 

industries, in geophysical fluid dynamics, in chemical technology and in petroleum industry, considerable effort has been directed towards 

understanding their flow. Oldroyd[11] proposed a theoretical model for a class of viscoelastic fluids. An experimental demonstration by Toms 

and Strawbridge[12] reveals that a dilute solution of methyl methacrylate in n-butyl acetate agrees well with the theoretical model of the 

Oldroyd fluid. Bhatia and Steiner[13] have studied the problem of thermal instability of Maxwellian viscoelastic fluid in the presence of rotation 

and have found that the rotation has a destabilizing influence in contrast to the stabilizing effect on an ordinary viscous (Newtonian) fluid. The 

thermal instability of an Oldroydian viscoelastic fluid acted on by a uniform rotation has been studied by Sharma.[14] Sharma and Sharma[15] 

studied the stability of the plane interface separating two Oldroydian viscoelastic superposed fluids of uniform densities. There are many 

elastico-viscous fluids that cannot be characterized by Oldroyd`s constitutive relations. Rivlin-Ericksen[16] fluids are such class of elastico-

viscous fluids. It is well known that the Rivlin-Ericksen fluid[16] is characterized by the constitutive equations 

 

𝑆 = −𝑝𝐼 + 𝜇𝐴1 + 𝜇′𝐴2 + 𝜇𝑖𝑖𝐴1
2 + 𝜇𝑖𝑖𝑖𝐴2

2 + 𝜇𝑖𝑣(𝐴1𝐴2 + 𝐴2𝐴1) + 𝜇𝑣(𝐴1
2𝐴2 + 𝐴2𝐴1

2) + 𝜇𝑣𝑖(𝐴1𝐴2
2 + 𝐴2

2 + 𝐴1) + 𝜇𝑣𝑖𝑖(𝐴1
2𝐴2

2 + 𝐴2
2𝐴1

2)         (1) 

 

where  S  is  the  Cauchy  stress  tensor,  ‘𝑝’  is  an  arbitrary  hydrostatic  pressure,  I  is  the  unit  tensor  and  𝜇′s  are  polynomial functions of 

the traces of the various tensors occurring in the representation, matrices ‘𝐴1’ and ‘𝐴2’ are defined by 

 

                                                  [𝐴1]𝑖𝑗 = (𝑞𝑖,𝑗 + 𝑞𝑗,𝑖)                                                                                                               (2) 

and 

 

                                [𝐴2]𝑖𝑗 =
𝜕[𝐴1]𝑖𝑗

𝜕𝑡
+ 𝑞𝑝[𝐴1]𝑖𝑗,𝑝 + [𝐴1]𝑖𝑝𝑞𝑝,𝑗 + [𝐴1]𝑝𝑗𝑞𝑝,𝑖                                                                      (3) 

 

‘𝑞𝑝’ being velocity vector. 

On neglecting the squares and products of ‘𝐴2’, we have 

 

                                                   𝑆 = −𝑝𝐼 + 𝜇𝐴1 + 𝜇′𝐴2 + 𝜇𝑖𝑖𝐴1
2,                                                                                         (4) 

 

where 𝜇, 𝜇𝑖 and 𝜇𝑖𝑖 are three material constants. It is customary to call  𝜇 the coefficient of ordinary viscosity, 𝜇′ the coefficient of 

viscoelasticity and  𝜇𝑖𝑖, the coefficient of cross-viscosity. The 𝜇, 𝜇𝑖 and 𝜇𝑖𝑖 are general functions of temperature and material  properties.  For 

many fluids  such as  aqueous  solution  of  polycrylamid and  poly-isobutylene, 𝜇, 𝜇𝑖 and 𝜇𝑖𝑖 may be taken as constants. Such and other 

polymers are used in the manufacture of parts of spacecrafts, aeroplane parts, tyres, belt conveyers, ropes, cushions, seats, foams, plastics, 

engineering equipment, adhesives, contact lens etc. Recently, polymers are also used in agriculture, communication appliances and in 

biomedical applications. Srivastava and Singh[17] have studied the unsteady flow of a dusty elastico-viscous Rivlin-Ericksen fluid through 

channels of different cross-sections in the presence of a time-dependent pressure gradient. In another study, Garg et al.[18] have studied the 

rectilinear oscillations of a sphere along its diameter in a conducting dusty Rivlin-Ericksen fluid in the presence of a uniform magnetic field. 

Sharma and Kumar[19] have studied the effect of rotation on thermal instability in Rivlin- Ericksen elastico-viscous fluid and found that rotation 

has a stabilizing effect and introduces oscillatory modes in the system. 



 

 
32 

Pardeep Kumar   Numerical Analysis and Applicable Mathematics 

Numer. Anal. Appl. Math., 2022, 3(6), 30-38. 

 

Keeping in mind the importance in geophysics, soil sciences, ground water hydrology, astrophysics, chemical technology, industry and 

various applications mentioned above, the present paper, therefore, deals with the combined effect of uniform vertical magnetic field and 

uniform rotation on the double-diffusive instability of a Rivlin-Ericksen viscoelastic fluid in porous medium. 

 

2. Structure of the Problem and Basic Equation 

Consider an infinite, horizontal, incompressible Rivlin-Ericksen viscoelastic fluid layer of thickness, 𝑑, heated and soluted from below so that, 

the temperatures, densities and solute concentrations at the bottom surface 𝑧 = 0 are 𝑇0, 𝜌0 and 𝐶0 and at the upper surface 𝑧 = 𝑑 are 𝑇𝑑, 𝜌𝑑 

and 𝐶𝑑 respectively, and that a uniform temperature gradient (𝛽 = |𝑑𝑇 𝑑𝑧⁄ | ) and a uniform solute  gradient  (𝛽′ = |𝑑𝐶 𝑑𝑧⁄ |) are  maintained. 

The gravity field �⃗�(0,0, −𝑔), a uniform vertical magnetic field �⃗⃗⃗�(0,0, 𝐻) and a uniform vertical rotation Ω⃗⃗⃗(0,0, Ω) pervade the system. This 

fluid layer is assumed to be flowing through an isotropic and homogeneous porous medium of porosity 휀 and medium permeability 𝑘1. 

Let 𝑝, 𝜌, 𝑇, 𝐶, 𝛼, 𝛼′, 𝑔, 휂, 𝜇𝑒  and �⃗�(𝑢, 𝑣, 𝑤) denote, respectively, the fluid pressure, density, temperature, solute concentration, and thermal 

coefficient of expansion, an analogous solvent coefficient of expansion, gravitational acceleration, resistivity, magnetic permeability and fluid 

velocity. The equations expressing the conservation of momentum, mass, temperature, solute concentration and equation of state of Rivlin-

Ericksen viscoelastic fluid are 

 

                           
1

[
𝜕�⃗⃗�

𝜕𝑡
+

1
(�⃗�. ∇)�⃗�] =  − (

1

𝜌0
) ∇p + �⃗� (1 +

𝛿𝜌

𝜌0
) −

1

𝑘1
(𝑣 + 𝑣′ 𝜕

𝜕𝑡
) �⃗� +

𝜇𝑒

4𝜋𝜌0
(∇ × �⃗⃗⃗�) × �⃗⃗⃗� +

2

𝜖
(�⃗� × Ω⃗⃗⃗),                                            (5) 

 

                                                               ∇. �⃗� = 0 ,                                                                                                                       (6) 

 

                                                      𝐸
𝜕𝑇

𝜕𝑡
+ (�⃗�. ∇)𝑇 = 𝑘∇2𝑇  ,                                                                                                    (7) 

 

                                                     𝐸′ 𝜕𝐶

𝜕𝑡
+ (�⃗�. ∇)𝐶 = 𝑘′∇2𝐶  ,                                                                                                  (8)                                                                                                                   

 

                                              𝜌 = 𝜌0[1 − 𝛼(𝑇 − 𝑇0) + 𝛼′(𝐶 − 𝐶0)] ,                                                                                   (9) 

 

where the suffix zero refers to values at the reference level z = 0  and in writing equation (5), use has been made of the Boussinesq 

approximation. The magnetic permeability 𝜇𝑒, the kinematic viscosity v, the kinematic viscoelasticity v′, the thermal diffusivity k and the 

solute diffusivity k′are all assumed to be constants. 

The Maxwell’s equations yield 

                                                     휀
𝑑�⃗⃗⃗�

𝑑𝑡
= (�⃗⃗⃗�. ∇)�⃗� + 휀휂∇2�⃗⃗⃗�  ,                                                                                               (10) 

and 

                                                                                                                        ∇. �⃗⃗⃗� = 0   ,                                                                                                              (11) 

 

where 
𝑑

𝑑𝑡
=  

𝜕

𝜕𝑡
+ 휀−1�⃗�. ∇  stands for the Convective derivative. 

Here E =  ε + (1 − ε) (
ρsCs

ρ0Cf
) is a constant and E′ is a constant analogous to E but corresponding to solute rather than heat. ρs, 

Cs and ρ0, Cf stand for density and heat capacity of solid (porous matrix) material and fluid, respectively. The steady state solution is, 

 

�⃗� = (0,0,0)  , 𝑇 = −𝛽𝑧 + 𝑇0, 

 

                                           𝐶 =  −𝛽′𝑧 + 𝐶0  , 𝜌 = 𝜌0(1 + 𝛼𝛽𝑧 − 𝛼′𝛽′𝑧).                                                                         (12) 

 

 

Consider a small perturbation on the steady state solution, and let 𝛿𝑝, 𝛿𝜌, 휃, 𝛾, ℎ⃗⃗ (hx, hy, hz)  and �⃗�(𝑢, 𝑣, 𝑤) denote, respectively, the 

perturbations in pressure 𝑝, density 𝜌, temperature 𝑇, solute concentration 𝐶, magnetic field �⃗⃗⃗�(0,0, 𝐻)  and velocity �⃗�(0,0,0). The change in 

density 𝛿𝜌, caused mainly by the perturbations 휃 and 𝛾 in temperature and concentration, is given by 

 

                                                          𝛿𝑝 = −𝜌0(𝛼휃 − 𝛼′𝛾).                                                                                                  (13) 

 

Then the linearized perturbation equations become 

 

                                                       
1

𝜖

𝜕�⃗⃗�

𝜕𝑡
= −

1

𝜌0

(∇𝛿𝑝) − �⃗�(𝛼휃 − 𝛼′𝛾) −
1

𝑘1
(v + v′ 𝜕

𝜕𝑡
) �⃗� +

μe

4𝜋𝜌0
(∇ × ℎ⃗⃗) × �⃗⃗⃗�              +

2
(�⃗� × Ω⃗⃗⃗),                             (14) 
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                                                                             ∇. �⃗� = 0   ,                                                                                                     (15) 

                                                                𝐸
𝜕𝜃

𝜕𝑡
= 𝛽𝑤 + 𝑘∇2휃  ,                                                                                               (16) 

 

                                                              𝐸′ 𝜕𝛾

𝜕𝑡
= 𝛽′𝑤 + 𝑘′∇2𝛾 ,                                                                                              (17) 

 

                                                              휀
𝜕ℎ⃗⃗⃗

𝜕𝑡
= (�⃗⃗⃗�. ∇)�⃗� + 휀휂∇2ℎ⃗⃗  ,                                                                                        (18) 

and  

                                                                             ∇. ℎ⃗⃗ = 0 .                                                                                                       (19) 

 

3. The Dispersion Relation 

For obtaining the dispersion relation, we now analyzing the disturbances into normal modes, assuming that the perturbation quantities are of 

the form 

 

                                                                        [𝑤, ℎ𝑧, 휃, 𝛾, 휁, 𝜉] = [𝑊(𝑧), 𝐾(𝑧), Θ(𝑧), Γ(𝑧), 𝑍(𝑧), 𝑋(𝑧)] exp(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑛𝑡),                                 (20) 

 

where 𝑘𝑥, 𝑘𝑦 are the wave numbers along the 𝑥 − and  𝑦 − directions respectively, 𝑘 = √(𝑘𝑥
2 + 𝑘𝑦

2) is the resultant wave number and 𝑛 is the 

growth rate which is, in general, a complex constant. 휁 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
  and 𝜉 =

𝜕ℎ𝑦

𝜕𝑥
−

𝜕ℎ𝑥

𝜕𝑦
  stand for the 𝑧 components of vorticity and current 

density, respectively. 

Expressing the coordinates 𝑥, 𝑦, 𝑧 in the new unit of length 𝑑 and letting 

 

                                                                                 𝑎 = 𝑘𝑑, 𝜎 =
𝑛𝑑2

𝑣
, 𝑝1 =

𝑣

𝑘
, 𝑝2 =

𝑣

𝜂
, 𝑞 =

𝑣

𝑘′ , 𝐹 =
𝑣′

𝑑2 , 𝑃𝑙 =
𝑘1

𝑑2  𝑎𝑛𝑑 𝐷 =
𝑑

𝑑𝑧
, 

equations (14) – (19), using (20), became 

 

                                                          [
𝜎

+
1

𝑃𝑙

(1 + 𝜎𝐹)] (𝐷2 − 𝑎2)𝑊 +
𝑔𝑎2𝑑2

𝑣
(𝛼Θ − 𝛼′Γ) −

𝜇𝑒𝐻𝑑

4𝜋𝜌0𝑣
(𝐷2 − 𝑎2)𝐷𝐾 +

2Ω𝑑3

𝑣
𝐷𝑍 = 0 ,                             (21) 

 

                                                                                           [
𝜎

+
1

𝑃𝑙

(1 + 𝜎𝐹)] 𝑍 = (
μe𝐻𝑑

4𝜋𝜌0𝑣
) 𝐷𝑋 +  (

2Ωd

𝑣
) 𝐷𝑊 ,                                                                      (22) 

 

                                                                                                 (𝐷2 − 𝑎2 − 𝑝2𝜎)𝐾 = − (
𝐻𝑑

𝜂
) 𝐷𝑊 ,                                                                                         (23) 

 

                                                                                                 (𝐷2 − 𝑎2 − 𝑝2𝜎)𝑋 = − (
𝐻𝑑

𝜂
) 𝐷𝑍 ,                                                                                           (24) 

 

                                                                                                 (𝐷2 − 𝑎2 − 𝐸𝑝1𝜎)Θ = − (
𝛽𝑑2

𝑘
) 𝑊 ,                                                                                         (25) 

 

and 

                                                                                                  (𝐷2 − 𝑎2 − 𝐸′𝑞𝜎)Γ = − (
𝛽′𝑑2

𝑘′ ) 𝑊.                                                                                        (26) 

 

Consider the case where both boundaries are free as well as perfect conductors of both heat and solute concentration, while the adjoining 

medium is perfectly conducting. The case of two free boundaries is a little artificial but it enables us to find analytical solutions and to make 

some qualitative conclusions. The appropriate boundary conditions, with respect to which equations (21) – (26) must be solved, are 

 

𝑊 = 𝐷2𝑊 = 𝑋 = 𝐷𝑍 = 0, Θ = 0, Γ = 0, 𝑎𝑡 𝑧 = 0 𝑎𝑛𝑑 1 

𝑘 = 0  on a perfectly conducting boundary       

 

                                                                                                  and ℎ𝑥 , ℎ𝑦 , ℎ𝑧 are continuous.                                                                                                  (27) 

 

The case of two free boundaries, though little artificial, is the most appropriate for stellar atmospheres.(Spiegel[20]) Using the above 

boundary conditions, it can be shown that all the even order derivatives of 𝑊 must vanish for 𝑧 = 0  and 1 and hence the proper solution of 𝑊 

characterizing the lowest mode is                                                                                                         
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                                                                                                               𝑊 = 𝑊0𝑠𝑖𝑛 𝜋𝑧 ,                                                                                                      (28) 

 

where 𝑊0 is a constant. 

Eliminating Θ, Γ, K, Z,  and X between (21) – (26) substituting the proper solution (28) in the resultant equation, we obtain the dispersion 

relation 

 

𝑅1 = (
1 + 𝑥

𝑥
) [

𝑖𝜎1

휀
+

1

𝑃
(1 + 𝑖𝜎1𝜋2𝐹)] [1 + 𝑥 + 𝑖𝐸𝑝1𝜎1] + 𝑄1

(1 + 𝑥)(1 + 𝑥 + 𝑖𝐸𝑝1𝜎1)

𝑥(1 + 𝑥 + 𝑖𝑝2𝜎2
+ 

 

                                                                              𝑆1
(1+𝑥+𝑖𝐸𝑝1𝜎1)

(1+𝑥+𝑖𝐸𝑝𝜎1)
+ 𝑇𝐴1

[
(1+𝑥+𝑖𝐸𝑝1𝜎1)(1+𝑥+𝑖𝑝2𝜎1)

𝑥{(
𝑖𝜎1

𝜀
+

1

𝑃
(1+𝑖𝜎1𝜋2𝐹))(1+𝑥+𝑖𝑝2𝜎1)+𝑄1}

] ,                                                              (29) 

 

where 

𝑅1 =
𝑔𝛼𝛽𝑑4

𝑣𝑘𝜋4 , 𝑆1 =
𝑔𝛼′𝛽′𝑑4

𝑣𝑘′𝜋4 , 𝑄1 =
𝜇𝑒𝐻2𝑑2

4𝜋𝜌0𝑣휂휀𝜋2  , 𝑇𝐴1
= (

2Ω𝑑2

휀𝑣𝜋2 ) , 𝑥 =
𝛼2

𝜋2′  

 

𝑖𝜎1 =
𝜎

𝜋2  𝑎𝑛𝑑 𝑃 = 𝜋2𝑃𝑙 

 

Equation (29) is the required dispersion relation including the effects of magnetic field, rotation, medium permeability, kinematic 

viscoelasticity and stable solute gradient on the double-diffusive instability of Rivlin-Ericksen rotating viscoelastic fluid in porous medium in 

hydro magnetics. 

 

4. Important Theorems and Discussion 

Theorem 1: The system is stable or unstable. 

 

Proof: Multiplying equation (21) by 𝑊∗, the complex conjugate of 𝑊 and using equations (22) – (26) together with the boundary conditions 

(27), we obtain 

 

[
𝜎

휀
+

1

𝑃𝑙
(1 + 𝜎𝐹)] 𝐼1 + (

𝑔𝛼′𝑘′𝑎2

𝑣𝛽′ ) [𝐼4 + 𝐸′𝑞𝜎∗𝐼5] +
𝜇𝑒휀휂

4𝜋𝜌0𝑣
[𝐼6 + 𝑝2𝜎∗𝐼7] +

𝜇𝑒휀휂𝑑2

4𝜋𝜌0𝑣
[𝐼8 + 𝑝2𝜎𝐼9] 

         +𝑑2 [
𝜎∗

+
1

𝑃𝑙
(1 + 𝜎∗𝐹)] 𝐼10 − (

𝑔𝛼𝑘𝑎2

𝑣𝛽
) [𝐼2 + 𝐸𝑝1𝜎∗𝐼3] = 0 ,                                                                                                 (30) 

 

where 

𝐼1 = ∫(|𝐷𝑊|2

1

0

+ 𝑎2|𝑊|2)𝑑𝑧, 𝐼2 = ∫(|𝐷Θ|2

1

0

+ 𝑎2|Θ|2)𝑑𝑧, 𝐼3 = ∫(|Θ|2

1

0

)𝑑𝑧 , 

𝐼4 = ∫(|𝐷Γ|2

1

0

+ 𝑎2|Γ|2)𝑑𝑧,  𝐼5 = ∫(|Γ|2

1

0

)𝑑𝑧, 

𝐼6 = ∫(|𝐷2𝐾|2

1

0

+ 2𝑎2|𝐷𝐾|2 + 𝑎4|𝐾|2)𝑑𝑧,  𝐼7 = ∫(|𝐷𝐾|2

1

0

+ 𝑎2|𝐾|2)𝑑𝑧, 

𝐼8 = ∫ (|𝐷𝑋|21

0
+ 𝑎2|𝑋|2)𝑑𝑧,  𝐼9 = ∫ (|𝑋|21

0
)𝑑𝑧,  𝐼10 = ∫ (|𝑍|21

0
)𝑑𝑧.                                                                              (31) 

 

The integrals I1, … … … … … … , I10 are all positive definite. Putting σ = σr + iσi and equating the real and imaginary parts of equation (30), 

we obtain 

[(
1

휀
+

𝐹

𝑃𝑙
) I1 +

𝑔𝛼′𝑘′𝑎2

𝑣𝛽′
𝐸′𝑞𝐼5 +

𝜇𝑒휀휂

4𝜋𝜌0𝑣
𝑝2( 𝐼7 + 𝑑2𝐼9) + 𝑑2 (

1

휀
+

𝐹

𝑃𝑙
)  𝐼10 −

𝑔𝛼𝑘𝑎2

𝑣𝛽
𝐸𝑝1𝐼3] 𝜎𝑟 

=  − [
I1

𝑃𝑙
+

𝑔𝛼′𝑘′𝑎2

𝑣𝛽′ 𝐼4 +
𝜇𝑒 𝜂

4𝜋𝜌0𝑣
(𝐼6 + 𝑑2𝐼8) + 𝑑2 1

𝑃𝑙
 𝐼10 −

𝑔𝛼𝑘𝑎2

𝑣𝛽
𝐼2] ,                                                               (32) 

                                                           [(
1

+
𝐹

𝑃𝑙
) I1 −

𝑔𝛼′𝑘′𝑎2

𝑣𝛽′ 𝐸′𝑞𝐼5 −
𝜇𝑒 𝜂

4𝜋𝜌0𝑣
𝑝2( 𝐼7 − 𝑑2𝐼9) − 𝑑2 (

1
+

𝐹

𝑃𝑙
) I10 +

𝑔𝛼𝑘𝑎2

𝑣𝛽
𝐸𝑃1𝐼3] 𝜎𝑖 = 0.                           (33) 

 

It is evident from equation (32) that 𝜎𝑟 is positive or negative. The system is, therefore, stable or unstable. 

 



 

 
35 

Pardeep Kumar   Numerical Analysis and Applicable Mathematics 

Numer. Anal. Appl. Math., 2022, 3(6), 30-38. 

 

Theorem 2: The modes may be oscillatory or non-oscillatory in contrast to case of no magnetic field and rotation, and in the absence of 

kinematic viscoelasticity and stable solute gradient where modes are non-oscillatory. 

 

Proof: Equation (33) yields that 𝝈𝒊 may be zero or non-zero, which means that the modes may be non-oscillatory or oscillatory. In the absence 

of kinematic viscoelasticity, stable solute gradient, rotation and magnetic field, equation (33) reduces to 

 

                                  [
I1 +

𝑔𝛼𝑘𝑎2

𝑣𝛽
𝐸𝑝1𝐼3] 𝜎𝑖 = 0,                                 (34) 

 

and the terms in brackets are positive definite. Thus 𝜎𝑖 = 0, which means that oscillatory modes are not allowed and the principle of exchange 

of stabilities is satisfied for a porous medium, in the absence of kinematic viscoelasticity, stable solute gradient, rotation and magnetic field. 

This result is true for the porous as well as non-porous medium.(Chandrasekhar[1]) The oscillatory modes are introduced due to the presence 

of kinematic viscoelasticity, stable solute gradient, rotation and magnetic field, which were non-existent in their absence. 

 

Theorem 3: The system is stable for 
𝑔𝛼𝑘

𝑣𝛽
≤

4𝜋2

𝑃𝑙
 and under the condition 

𝑔𝛼𝑘

𝑣𝛽
>

4𝜋2

𝑃𝑙
, the system becomes unstable. 

 

Proof: From equation (33), it is clear that 𝜎𝑖 is zero when the quantity multiplying it is not zero and arbitrary when this quantity is zero. 

If  𝜎𝑖 ≠ 0, equation (32) upon utilizing (33) and the Rayleigh-Ritz inequality gives 

 

              [
4𝜋2

𝑃𝑙
−

𝑔𝛼𝑘

𝑣𝛽
] ∫ |𝑊|2𝑑𝑧 +

𝜋2+𝑎2

𝑎2

1

0
{𝑑2 1

𝑃𝑙
 𝐼10 +

𝜇𝑒 𝜂

2𝜋𝜌0𝑣
𝑝2𝑑2𝐼9𝜎𝑟 +

𝜇𝑒 𝜂

4𝜋𝜌0𝑣
( 𝐼6 + 𝑑2𝐼8) +

𝑔𝛼′𝑘′𝑎2

𝑣𝛽′ 𝐼4 + 2 (
1

+
𝐹

𝑃𝑙
) 𝜎𝑟𝐼1} ≤ 0,                      (35) 

 

Since the minimum value of 
(𝜋2+𝑎2)2

𝑎2  with respect to 𝑎2 is 4𝜋2. 

Now, let 𝜎𝑟 ≥ 0, we necessarily have from inequality (35) that 

 

                                                     
𝑔𝛼𝑘

𝑣𝛽
>

4𝜋2

𝑃𝑙
.          (36) 

 

Hence, if 

                                                     
𝑔𝛼𝑘

𝑣𝛽
≤

4𝜋2

𝑃𝑙
,         (37) 

 

then σr < 0. Therefore, the system is stable. 

Thus, under condition (37), the system is stable and under condition (36) the system becomes unstable. 

 

Theorem 4: For stationary convection case: 

• The stable solute gradient and rotation have stabilizing effects on the system. 

• In the absence of rotation, the medium permeability has a destabilizing effect, whereas magnetic field has a stabilizing effect on 

the system. 

• In the presence of rotation if 

𝑇𝐴1
< (𝑜𝑟 >)

(1 + 𝑥 + 𝑃𝑄1)2

(1 + 𝑥)𝑃2  

the medium permeability has a destabilizing (or stabilizing) effect and magnetic field has a stabilizing (or destabilizing) effect on the system. 

 

Proof: When the instability sets in as stationary convection, the marginal state will be characterized by 𝜎 = 0. Putting 𝜎 = 0, the dispersion 

relation (29) reduces to 

 

𝑅1 = (
1+𝑥

𝑥
) [

1+𝑥

𝑃
+ 𝑄1] + 𝑇𝐴1

(1+𝑥)2

𝑥{
1+𝑥

𝑃
+𝑄1}

+ 𝑆1,                               (38) 

which expresses the modified Rayleigh number 𝑅1 as a function of the dimensionless wave 𝑥 and the parameters 𝑆1, 𝑇𝐴1
, 𝑄1 and 𝑃. The 

parameter 𝐹 accounting for the kinematic viscoelasticity effect vanishes for the stationary convection. 

To investigate the effects of stable solute gradient, rotation, magnetic field and medium permeability, we examine the behaviour of 
𝑑𝑅1

𝑑𝑆1
,

𝑑𝑅1

𝑑𝑇𝐴1

,
𝑑𝑅1

𝑑𝑃
  and 

𝑑𝑅1

𝑑𝑄1
 analytically. 

(I) Equation (38) yields 

                                            
𝑑𝑅1

𝑑𝑆1
= +1,                                                 (39) 

which is positive. Thus, the stable solute gradient has a stabilizing effect on the system for the case of stationary convection. 
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Equation (38) also yields 

                                     
𝑑𝑅1

𝑑𝑇𝐴1

= (
1+𝑥

𝑥
)

(1+𝑥)

{
1+𝑥

𝑃
+𝑄1}

,         (40) 

 

which is always positive. The rotation, therefore, has a stabilizing effect on the system for the case of stationary convection. 

 

(II) It is evident from (38) that 

                             
𝑑𝑅1

𝑑𝑃
=

(1+𝑥)2

𝑥
[

1

𝑃2
− 𝑇𝐴1

(1+𝑥)

(1+𝑥+𝑃𝑄1)2
] ,        (41) 

and 

                             
𝑑𝑅1

𝑑𝑄1
=

(1+𝑥)

𝑥
[1 − 𝑇𝐴1

(1+𝑥)𝑃2

(1+𝑥+𝑃𝑄1)2].                          (42) 

 

In the absence of rotation (TA1
= 0), equation (41) reduces to 

                                                  
𝑑𝑅1

𝑑𝑃
=

(1+𝑥)2

𝑥𝑃2
 ,                                           (43) 

 

which is negative. Hence, the medium permeability has a destabilizing effect on the system in the absence of rotation. Now, in the absence of 

rotation, equation (42) gives 

 

                                                 
𝑑𝑅1

𝑑𝑄1
=

(1+𝑥)

𝑥
,                          (44) 

which is positive. The magnetic field, therefore, has a stabilizing effect on the system for the case of stationary convection in the absence of 

rotation. 

 

(III) In the presence of rotation, it is clear from equations (41) and (42) that the medium permeability has a destabilizing (or stabilizing) 

effect and the magnetic field has a stabilizing (or destabilizing) effect on the system for the case of stationary convection if 

 

                                   𝑇𝐴1
< (𝑜𝑟 >)

(1+𝑥+𝑃𝑄1)2

(1+𝑥)𝑃2
.          (45) 

 

Theorem 5: The sufficient conditions for the non-existence of over stability are 

 

𝐸
𝑣

𝑘
> 𝑚𝑖𝑛 {𝐸′

𝑣

𝑘′

2

휀
(

2Ωπ𝑘1

휀𝑣𝑑
)

2

(𝑘1 + 휀𝑣′)} 

and 

𝑣 >
𝑘1π

휀2𝑑2 (
3𝜇𝑒𝐻2

4𝑣𝜌0
) (𝑘1 + 휀𝑣). 

 

Proof: Here we discuss the possibility of whether instability may occur as over stability. Since we wish to determine the critical Rayleigh 

number for the onset of instability via a state of pure oscillations, it suffices to find conditions for which (29) will admit of solutions with 𝜎1 

real. 

Equating the real and imaginary parts of equation (29) and eliminating 𝑅1 between them, we obtain 

 

 

𝐴4𝑐1
4 + 𝐴3𝑐1

3 + 𝐴2𝑐1
2 + 𝐴1𝑐1 + 𝐴0 = 0,                            (46) 

 

Where we have put c1 = σ1
2, b = 1 + x and 

𝐴4 = 𝐸′2𝑞2𝑝2
2 (

1
+

π2𝐹

𝑃
)

2

[(
1

+
π2𝐹

𝑃
) 𝑏 +

𝐸𝑝1

𝑃
],          (47) 

 

𝐴3 = [(
1

+
π2𝐸

𝑃
)

3

(2𝐸′2𝑞2𝑝2
2)] 𝑏4 + [

𝐸𝑝1𝑝2
2

𝑃
(

1
+

π2𝐹

𝑃
)

2

+ 2𝐸′2𝑞2 {
𝐸𝑝1

𝑃
(

1
+

π2𝐹

𝑃
)

2

}] 𝑏3   

 

+ [𝐸′2𝑞2𝑝2 (
1

+
π2𝐹

𝑃
) {

𝑝2

𝑃2
− 3𝑄1 (

1
+

π2𝐹

𝑃
)} + 𝐸𝑝1𝐸′2𝑞2𝑄1 (

1
+

π2𝐹

𝑃
)

2

] 𝑏2    

 

+𝑝2 [𝐸2𝑞2 {
𝐸𝑝1

2𝑃
(

𝑝2

𝑃2
− 4𝑄1

1

휀
+

π2𝐹

𝑃

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) + 𝑝2 (

𝐸𝑝1

2P3
− 𝑇𝐴1

1

휀
+

π2𝐹

𝑃

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)} + 𝑆1(𝑏 − 1)𝑝2 (

1

휀
+

π2𝐹

𝑃
)

2

(𝐸𝑝1 − 𝐸′𝑞)] 𝑏 
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+
𝑇𝐴1𝐸𝑝1𝐸′2𝑞2𝑝2

2

𝑃
             (48) 

 

The coefficients 𝐴0 − 𝐴2  being quite lengthy and not needed in the discussion of over stability, have not been written here. Since 𝜎1 is real for 

overstability, the four values of 𝑐1(= 𝜎1
2) are positive. The sum of roots of equation (46) is −

𝐴3

𝐴4
 , and if this is to be negative, then 𝐴3 > 0 

(since from (47), 𝐴4 > 0 ).  

It is clear from equation (48) that 𝐴3 is always positive if 

 

𝐸𝑝1 > 𝐸′𝑞, 𝐸𝑝1 > 2P3𝑇𝐴1
(

1
+

π2𝐹

𝑃
) 𝑎𝑛𝑑 𝑝2 > 3𝑄1𝑃2 (

1
+

π2𝐹

𝑃
),       (49) 

 

which imply that 

𝐸
𝑣

𝑘
> 𝐸′

𝑣

𝑘′
, 𝐸

𝑣

𝑘
>

2

휀
(

2Ωπ𝑘1

휀𝑣𝑑
)

2

(𝑘1 + 휀𝑣′) 

 

and 

                 𝑣 >
𝑘1π

ε2d2
(

3𝜇𝑒𝐻2

4𝑣𝜌0
) (𝑘1 + 휀𝑣′),          (50) 

 

i.e. 

𝐸
𝑣

𝑘
> 𝑚𝑖𝑛 {𝐸′

𝑣

𝑘′

2

휀
(

2Ωπ𝑘1

휀𝑣𝑑
)

2

(𝑘1 + 휀𝑣′)} 

and 

𝑣 >
𝑘1π

ε2d2
(

3𝜇𝑒𝐻2

4𝑣𝜌0
) (𝑘1 + 휀𝑣′).          (51) 

Thus  

𝐸
𝑣

𝑘
> 𝑚𝑖𝑛 {𝐸′

𝑣

𝑘′

2

휀
(

2Ωπ𝑘1

휀𝑣𝑑
)

2

(𝑘1 + 휀𝑣′)} 

And 

𝑣 >
𝑘1π

ε2d2
(

3𝜇𝑒𝐻2

4𝑣𝜌0
) (𝑘1 + 휀𝑣′) 

 

are the sufficient conditions for the non-existence of over stability, the violation of which does not necessarily imply the occurrence of over 

stability. 

 

5. Conclusions 

The double-diffusive instability of a Rivlin-Ericksen viscoelastic fluid in porous medium in the presence of uniform vertical magnetic field and 

uniform rotation is considered in the present paper. The investigation is motivated by its interesting complexities as a double- diffusion 

phenomena as well as its direct relevance to astrophysics and geophysics. The conditions under which convective motion in double-diffusive 

convection are important (e.g. in lower parts of the Earth’s atmosphere, astrophysics, and several geophysical situations) are usually far 

removed from the consideration of a single component fluid and rigid boundaries and therefore it is desirable to consider a fluid acted on by a 

solute gradient and free boundaries. The main conclusions from the analysis of this paper are as follows: 

 

• It is found that the kinematic viscoelasticity, rotation, stable solute gradient and magnetic field introduce oscillatory modes in the 

system which was non-existent in their absence. 

• It is observed that the system is stable for 
𝑔𝛼𝑘

𝑣𝛽
≤

4𝜋2

𝑃𝑙
 and under the condition  

𝑔𝛼𝑘

𝑣𝛽
>

4𝜋2

𝑃𝑙
 , the system becomes unstable. 

• For the case of stationary convection, the stable solute gradient and rotation are found to have stabilizing effects on the system. 

• It is also observed for the case of stationary convection that in the presence of rotation, the magnetic field has a stabilizing (or 

destabilizing) effect and the medium permeability has a destabilizing (or stabilizing) effect under certain conditions whereas in the 

absence of rotation, the magnetic field and the medium permeability have stabilizing and destabilizing effects, respectively. 

• The case of over stability is also considered. The conditions 

 

𝐸
𝑣

𝑘
> 𝑚𝑖𝑛 {𝐸′

𝑣

𝑘′

2

휀
(

2Ωπ𝑘1

휀𝑣𝑑
)

2

(𝑘1 + 휀𝑣′)} 

and 
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𝑣 >
𝑘1π

ε2d2 (
3𝜇𝑒𝐻2

4𝑣𝜌0
) (𝑘1 + 휀𝑣′), 

 

are the sufficient conditions for the non-existence of over stability, the violation of which does not necessarily imply the occurrence of over 

stability.  
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