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1. Introduction 

Stochastic delay differential equation (SDDE) is a stochastic differential equation where the increment of the process depends not only on 

current state but also on the history part which contains the random values of the system being modeled. The applications of SDDEs can be 

seen in applied sciences, economics and engineering. Most scholars such as[1-6] applied Euler-Maruyama scheme to develop a continuous split-

step scheme of SDDE on a continuous interval 𝑡0 ≤ 𝑡 ≤ 𝑡𝑎 in order to obtain its numerical solutions and used interpolation techniques in 

evaluating the delay term but encountered some setbacks. One of the setbacks encountered by these scholars in the application of the 

interpolation techniques such as Hermite, Nordsieck, and Newton divided difference and Neville's interpolation to evaluate the delay term was 

studied by[7] that the order of the interpolating polynomials should be at least the same with numerical methods which is very difficult to 

carry-out. Researchers[8-15] applied the formula developed by[16] for the evaluation of the delay term of delay differential equations and 

discovered that it gives lesser accurate results, it takes more time to compute and cannot be adequately use in solving different classes of 

DDEs with multiple delay terms. It is highly required that an accurate mathematical expression need to be develop to address these 

observations discovered. In this research work, we shall be constructing and applying Block Backward Differentiation Formulae Methods 

(BBDFMs) as a linear multistep collocation method to discretize SDDEs on a discrete interval (𝑡0, 𝑡𝑎) in order to obtain its discrete schemes 

from the continuous representations of each step number through matrix inversion approach. These discrete schemes obtained shall be 

applied in solving some SDDEs with accurate and efficient formulae in evaluating the delay terms which gives more accurate results, lesser 

time to compute and can also solve different classifications of DDEs. 

From,[17] stochastic delay differential equation (SDDE) can be express as 

 

𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡), 𝑋(𝑡 − 𝜏), 𝑡)𝑑𝑡 + 𝑔(𝑋(𝑡), 𝑋(𝑡 − 𝜏), 𝑡)𝑑𝑊(𝑡)  for 𝑡 > 𝑡0, 𝜏 > 0 

𝑋(𝑡) = 𝜉(𝑡), for 𝑡 ≤ 𝑡0                                                                                                                                                                                                                (1) 

 

where 𝜉(𝑡) is the initial function, 𝑋(𝑡) is the stochastic process of the current state, 𝜏 is called the delay, (𝑡 − 𝜏) is called the delay term and 

𝑋(𝑡 − 𝜏) is the solution of the delay term on the drift part and 𝑊(𝑡) is the standard Brownian motion with its differential equivalence as 

𝑑𝑊(𝑡) which is the noise term or Wiener process together with solution of the delay term as 𝑋(𝑡 − 𝜏)𝑑𝑊(𝑡) on the diffusion part of (1). 
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1.1. Existence and Uniqueness of Solutions 

Here, we shall state the theorem for existence and uniqueness solutions for equation (1) as in [18]. 

Theorem 1: Let the current state and history part of the drift and diffusion coefficients of (1) be represented as 𝑎 and 𝑏, then the functions 

𝑓(𝑎, 𝑏, 𝑡) and 𝑔(𝑎, 𝑏, 𝑡) satisfying the condition ∥ 𝑓(𝑎1, 𝑏1, 𝑡) + 𝑔(𝑎2, 𝑏2, 𝑡) ∥≤ 𝑆(𝑡) + 𝑅(𝑡)(∥ 𝑎1 + 𝑎2 ∥ +∥ 𝑏1 + 𝑏2 ∥) in (𝑡0, 𝑡𝑧) × ℜ𝑒 × ℜ𝑒, 

where 𝑆(𝑡) and 𝑅(𝑡) are continuous positive functions on (𝑡0, 𝑡𝑧), then the solution of (1) exist and is unique on the entire discrete interval 

(𝑡0, 𝑡𝑧). Taking into consideration the sequence of points {𝑡𝑧} defined by 𝑡𝑧 = 𝑡0 + 𝑧𝑙, 𝑧 = 1,2,…. where the parameter 𝑙 is the stepsize, the 

computational solution is sought on the discrete point set {𝑡𝑧|𝑧 = 1,2,… ,
𝑡𝑧−𝑡0

𝑙
} and not on continuous interval 𝑡0 ≤ 𝑡 ≤ 𝑡𝑧. 

 

2. Method of Formulation 

2.1. Formulation of Multistep Collocation Method 

In [19], a k-step multistep collocation method with q collocation points was formulated as 

 

𝑦(𝑥) = ∑ 𝜙𝑢(𝑥)𝑦𝑧+𝑢

𝑝−1

𝑢=0

+ 𝑙 ∑ 𝜓𝑢(𝑥)

𝑞−1

𝑢=0

𝑓(𝑥, 𝑦(𝑥))                                                                                                                                                                       (2) 

 

where 𝜙𝑢(𝑥) and 𝜓𝑢(𝑥) are continuous coefficients of the method defined as 

 

𝜙𝑢(𝑥) = ∑ 𝜙𝑢,𝑣+1

𝑝+𝑞−1

𝑣=0

𝑥𝑣   𝑓𝑜𝑟 𝑢 = {0,1, … , 𝑝 − 1}                                                                                                                                                                   (3) 

𝑙𝜓𝑢(𝑥) = ∑ 𝑙𝜓𝑢,𝑣+1

𝑝+𝑞−1

𝑣=0

𝑥𝑣   𝑓𝑜𝑟 𝑢 = {0,1,… , 𝑞 − 1}                                                                                                                                                                (4) 

 

where 𝑋0, … , 𝑋𝑞−1 are the 𝑞 collocation points and 𝑥𝑧+𝑢, 𝑢 = 0,1,2, … , 𝑝 − 1 are the 𝑝 arbitrarily chosen interpolation points. 

To get 𝜙𝑢(𝑥) and 𝜓𝑢(𝑥), [19] arrived at a matrix equation of the form 

 

𝐻𝐸 = 𝐼                                                                                                                                                                                                                                                   (5)                                                             

 

where 𝐼 is the square matrix of dimension (𝑝 + 𝑞) × (𝑝 + 𝑞)  while 𝐻 and 𝐸 are matrices defined as 

 

𝐻 =

[
 
 
 

𝜙0,1 𝜙1,1 ⋯ 𝜙𝑧−1,1 𝑙𝜓0,1 ⋯ 𝑙𝜓𝑞−1,1

𝜙0,2 𝜙1,2 ⋯ 𝜙𝑧−1,2 𝑙𝜓0,2 ⋯ 𝑙𝜓𝑞−1,2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜙0,𝑝+𝑞 𝜙1,𝑝+𝑞 ⋯ 𝜙𝑧−1,𝑝+𝑞 𝑙𝜓0,𝑝+𝑞 ⋯ 𝑙𝜓𝑞−1,𝑝+𝑞]

 
 
 

                                                                                                                                       (6)    

𝐸 =

[
 
 
 
 
 
 
 
 1 𝑋𝑧 𝑋2 ⋯ 𝑋𝑧

𝑝+𝑞−1

⋮ 𝑋𝑧+1 𝑋𝑧+1
2 ⋯ 𝑋𝑧+1

𝑝+𝑞−1

⋮ ⋮ ⋮ ⋮ ⋮

1 𝑋𝑧+𝑝−1 𝑋𝑧+𝑝−1
2 ⋯ 𝑋𝑧+𝑝−1

𝑝+𝑞−1

0 1 2𝑋0 ⋯ (𝑝 + 𝑞 − 1)𝑋0
𝑝+𝑞−2

⋮ ⋮ ⋮ ⋮ ⋮

0 1 2𝑋𝑞−1 ⋯ (𝑝 + 𝑞 − 1)𝑋𝑞−1
𝑝+𝑞−2

]
 
 
 
 
 
 
 
 

                                                                                                                                                            (7) 

                                                                                                                   

It follows from (5) that the columns of 𝐻 = 𝐸−1 give the continuous coefficients of the continuous scheme (2). 

Subsequently, the continuous representations of the BBDFMs for step numbers k = 2, 3 and 4 shall be obtained using multistep collocation 

method of [19]. 

 
2.2. Formulation of Block Backward Differentiation Formulae Methods (BBDFMs) for k = 2 

In this section, the interpolation point 𝑝 = 2 and the collocation points 𝑞 = 1  are considered, therefore (2) becomes 

 

𝑦(𝑥) = 𝜙0(𝑥)𝑦𝑧 + 𝜙1(𝑥)𝑦𝑧+1 + 𝑙𝜓2(𝑥)𝑓𝑧+2                                                                                                                                                                               (8) 

 

The matrix 𝐸 in (5) becomes 
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𝐸 = [

1 𝑥𝑧 𝑥𝑧
2

1 𝑥𝑧+1 (𝑥𝑧 + 𝑙)2

0 1 2𝑥2+4𝑙

]                                                                                                                                                                                                              (9) 

 

The inverse of the matrix 𝐻 = 𝐸−1 is computed using Maple 18 from which the continuous scheme is obtained using (2), evaluating and 

simplifying it at 𝑥 = 𝑥𝑧+2 and its derivative at = 𝑥𝑧+1, the following discrete schemes are obtained 

 

𝑦𝑧+1 =
3

2
𝑙𝑓𝑧+1 −

1

2
𝑙𝑓𝑧+2 + 𝑦𝑧                                                                                                                                                                                                                

𝑦𝑧+2 = −
1

3
𝑦𝑧 +

4

3
𝑦𝑧+1 +

2

3
𝑙𝑓𝑧+2                                                                                                                                                                                                 (10) 

 

2.3. Formulation of Block Backward Differentiation Formulae Methods (BBDFMs) for k = 3 

In this section, the number of interpolation point p =3 and the number of collocation points is q =1. Therefore, (2) becomes 

 

𝑦(𝑥) = 𝜙0(𝑥)𝑦𝑧 + 𝜙1(𝑥)𝑦𝑧+1 + 𝜙2(𝑥)𝑦𝑧+2 + 𝑙𝜓3(𝑥)𝑓𝑧+3                                                                                                                                                  (11) 

 

The matrix E in (5) becomes 

 

𝐸 =

(

 
 

1 𝑥𝑧 𝑥𝑧
2 𝑥𝑧

3

1 𝑥𝑧+1 (𝑥𝑧 + 𝑙)2 (𝑥𝑧 + 𝑙)3

1 𝑥𝑧+2𝑙 (𝑥𝑧 + 2𝑙)2 (𝑥𝑧 + 2𝑙)3

0 1 2𝑥𝑧+6𝑙 3(𝑥𝑧 + 3𝑙)2
)

 
 

                                                                                                                                                                          (12) 

 

The inverse of the matrix 𝐻 = 𝐸−1is computed using Maple 18 from which the continuous scheme is derived using (2), evaluating and 

simplifying it at 𝑥 = 𝑥𝑧+3 and its derivatives at 𝑥 = 𝑥𝑧+1, 𝑥 = 𝑥𝑧+2 the following discrete schemes are obtained 

 

𝑦𝑧+1 = −
11

4
𝑙𝑓𝑧+1 −

1

4
𝑙𝑓𝑧+3 − 𝑦𝑧 + 2𝑦𝑧+2  

𝑦𝑧+2 =
22

23
𝑙𝑓𝑧+2 −

4

23
𝑙𝑓𝑧+3 −

5

23
𝑦𝑧 +

28

23
𝑦𝑧+1 

𝑦𝑧+3 =
2

11
𝑦𝑧 −

9

11
𝑦𝑧+1 +

18

11
𝑦𝑧+2 +

6

11
𝑙𝑓𝑧+3                                                                                                                                                                          (13) 

 

2.4. Formulation of Block Backward Differentiation Formulae Methods (BBDFMs) for k =4 

Here also, the number of interpolation point, p =4 and the number of collocation points, 1 q =1. 

Therefore, (2) becomes 

 

𝑦(𝑥) = 𝜙0(𝑥)𝑦𝑧 + 𝜙1(𝑥)𝑦𝑧+1 + 𝜙2(𝑥)𝑦𝑧+2 + 𝜙3(𝑥)𝑦𝑧+3 + 𝑙𝜓4(𝑥)𝑓𝑧+4                                                                                                                        (14) 

 

Also the matrix E in (5) becomes 

𝐸 =

(

  
 

1 𝑥𝑧 𝑥𝑧
2 𝑥𝑧

3 𝑥𝑧
4

1 𝑥𝑧+1 (𝑥𝑧 + 𝑙)2 (𝑥𝑧 + 𝑙)3 (𝑥𝑧 + 𝑙)4

1 𝑥𝑧+2𝑙 (𝑥𝑧 + 2𝑙)2 (𝑥𝑧 + 2𝑙)3 (𝑥𝑧 + 2𝑙)4

0 𝑥𝑧+3𝑙 (𝑥𝑧 + 3𝑙)2 (𝑥𝑧 + 3𝑙)3 (𝑥𝑧 + 3𝑙)4

0 1 2𝑥𝑧+8𝑙 3(𝑥𝑧 + 4𝑙)2 4(𝑥𝑧 + 4𝑙)3)

  
 

                                                                                                                                            (15) 

 

The inverse of the matrix 𝐻 = 𝐸−1 is computed using Maple 18 from which the continuous scheme is also derived using (2), evaluating and 

simplifying it at 𝑥 = 𝑥𝑧+4 and its derivatives at 𝑥 = 𝑥𝑧+1, 𝑥 = 𝑥𝑧+2, 𝑥 = 𝑥𝑧+3 the following discrete schemes are obtained 

 

𝑦𝑧+1 = −
50

39
𝑙𝑓𝑧+1 +

2

39
𝑙𝑓𝑧+4 −

1

3
𝑦𝑧 +

23

13
𝑦𝑧+2 −

17

39
𝑦𝑧+3 

𝑦𝑧+2 =
25

3
𝑙𝑓𝑧+2 +

1

3
𝑙𝑓𝑧+4 −

7

9
𝑦𝑧 + 6𝑦𝑧+1 −

38

9
𝑦𝑧+3 

𝑦𝑧+3 =
150

197
𝑙𝑓𝑧+3 −

18

197
𝑙𝑓𝑧+4 +

17

197
𝑦𝑧 −

99

197
𝑦𝑧+1 +

279

197
𝑦𝑧+2         

𝑦𝑧+4 = −
3

25
𝑦𝑧 +

16

25
𝑦𝑧+1 −

36

25
𝑦𝑧+2 +

48

25
𝑦𝑧+3 +

12

25
𝑙𝑓𝑧+4                                                                                                                                                  (16) 
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3. Analysis of the Basic Properties of the Method 

In numerical analysis, it is necessary that the method satisfies the necessary and sufficient conditions as proposed by.[20,21] Therefore, the 

analysis of order, error constant, consistency, zero stability and region of absolute stability of (10), (13) and (16) are investigated. 

 

3.1. Order and Error Constant 

In [20], the Linear Multistep Method is said to be of order d if 𝐶0 = 𝐶1 = 0,… , 𝐶𝑑 = 0 but 𝐶𝑑+1 ≠ 0 and 𝐶𝑑+1 is called the error constant. The 

order and error constants for (10) are obtained as follows 

𝐶0 = 𝐶1 = 𝐶2 = (0 0)𝑇 

𝐶3 = (
5

12
−

2

9
)
𝑟

 

Hence, (10) has an order d=2 and error constant (
5

12
−

2

9
)
𝑟

 

Using the same techniques, (13) can be presented as follows 
 

𝐶0 = 𝐶1 = 𝐶2 = 𝐶3 = (0 0 0)𝑇 

𝐶4 = (
7

24

17

138
−

3

22
)
𝑇

 

Therefore, (13) has order d=3 and error constant 𝐶4 = (
7

24

17

138
−

3

22
)
𝑇

 

Following the same step, (16) can be presented as 

 

𝐶0 = 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = (0 0 0 0)𝑇 

𝐶5 = (−
29

390
−

31

90

111

1970
−

12

125
)
𝑇

 

Therefore, (16) has order d=4 and error constants (−
29

390
−

31

90

111

1970
−

12

125
)
𝑇

 

 

3.2. Consistency 

According to [20], a numerical method is said to be consistent if the order d is greater than 1 i.e. 𝑑 ≥ 1. Since the order of our proposed 

method BBDFM as analyzed for the discrete schemes (10), (13) and (16) in section (3.1) is greater than 1 i.e. 𝑑 ≥ 1, the necessary condition for 

consistency of our proposed method is satisfied. Hence the method is consistent. 

 
3.3. Zero Stability Analysis 

In [21], a numerical method is said to be zero stable if the roots 𝑟𝑠, s= 1,2,3,...,n of the first characteristic polynomial 𝜂(𝑟) expressed as 𝜂(𝑟) =

𝑑𝑒𝑡 (𝑟𝑇2
(1)

− 𝑇1
(1)

) satisfies |𝑟𝑠| ≤ 1 and the roots |𝑟𝑠| is simple or distinct. 

The zero stability for (10) is examined as follows 

(
1 0
0 1

) (
𝑦𝑧+1

𝑦𝑧+2
) = (

0 −1

0
1

3

) (
𝑦𝑧−1

𝑦𝑧
) + 1(

3

2
−

1

2

0
2

3

)(
𝑓𝑧+1

𝑓𝑧+2
) + 1 (

0 0
0 0

) (
𝑓𝑧−1

𝑓𝑧
)                                                                                                                       

𝑇2
(1)

= (
1 0
0 1

), 𝑇1
(1)

= (
0 −1

0
1

3

) and 𝐷2
(1)

= (

3

2
−

1

2

0
2

3

) 

The first characteristic polynomial is stated as 

𝜂(𝑟) = 𝑑𝑒𝑡 (𝑟𝑇2
(1)

− 𝑇1
(1)

) 

|𝑟𝑇2
(1)

− 𝑇1
(1)

| = 0                                                                                                                                                                                                                            (17) 

 

Now we have, 

𝜂(𝑟) = |𝑟 (
1 0
0 1

) − (
0 −1

0
1

3

)| = |(
𝑟 0
0 𝑟

) − (
0 −1

0
1

3

)| 

⇒ η(r) = (
r −1

0 r −
1

3

) 

Using Maple (18) software, we obtain 

η(r) =
1

3
r(3r − 1) 
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⇒
1

3
r(3r − 1) = 0 

⇒ r1 = 1, r2 =
1

3
. Since |rs| ≤ 1 s= 1, 2, the discrete schemes in (10) is zero stable. 

 

Following the same step for (13), we have 

(

 
 

1 2 0

−
28

23
1 0

9

11
−

18

11
1
)

 
 

(

𝑦𝑧+1

𝑦𝑧+2

𝑦𝑧+3

) =

(

 
 

0 0 1

0 0
5

23

0 0 −
2

11)

 
 

(

𝑦𝑧−2

𝑦𝑧−1

𝑦𝑧

) + 1

(

 
 
 

−
11

4
0 −

1

4

0
22

23
−

4

23

0 0
6

11 )

 
 
 

(

𝑓𝑧+1

𝑓𝑧+2

𝑓𝑧+3

) + 1(
0 0 0
0 0 0
0 0 0

)(

𝑓𝑧−2

𝑓𝑧−1

𝑓𝑧

) 

Where 

𝑇2
(2)

= (

1 2 0

−
28

23
1 0

9

11
−

18

11
1

),  𝑇1
(2)

= (

0 0 1

0 0
5

23

0 0 −
2

11

), 𝐷2
(2)

=

(

 
 

−
11

4
0 −

1

4

0
22

23
−

4

23

0 0
6

11 )

 
 

 

The first characteristic polynomial is stated as 

𝜂(𝑟) = 𝑑𝑒𝑡 (𝑟𝑇2
(2)

− 𝑇1
(2)

) 

|𝑟𝑇2
(2)

− 𝑇1
(2)

| = 0                                                                                                                                                                                                                            (18) 

 

Now we have, 

𝜂(𝑟) = |
|𝑟

(

 
 

1 2 0

−
28

23
1 0

9

11
−

18

11
1
)

 
 

−

(

 
 

0 0 1

0 0
5

23

0 0 −
2

11)

 
 

|
| = |

|

(

 
 

𝑟 2𝑟 0

−
28

23
𝑟 𝑟 0

9

11
𝑟 −

18

11
𝑟 𝑟

)

 
 

−

(

 
 

0 0 1

0 0
5

23

0 0 −
2

11)

 
 

|
| 

⇒ η(r) =

(

 
 

r 2r −1

−
28

23
𝑟 r −

5

23
9

11
𝑟 −

18

11
𝑟 𝑟 +

2

11)

 
 

 

The following are obtained using Maple (18) software, 

η(r) =
79

23
r3 −

29

23
𝑟2 

⇒
79

23
r3 −

29

23
𝑟2 = 0 

⇒ r1 =
29

79
, r2 = 0, r3 = 0. Since |rs| ≤ 1 s= 1, 2, 3, the discrete schemes in (13) is zero stable. 

 

By the same technique (16) can be presented as follows 

(

 
 
 
 
 

1 −
23

13

17

39
0

−6 1
38

9
0

99

197
−

279

197
1 0

−
16

25

36

25
−

48

25
1)

 
 
 
 
 

(

𝑦𝑧+1

𝑦𝑧+2

𝑦𝑧+3

𝑦𝑧+4

) =

(

 
 
 
 
 

0 0 0
1

3

0 0 0
7

9

0 0 0 −
17

197

0 0 0
3

25 )

 
 
 
 
 

(

𝑦𝑧−3

𝑦𝑧−2

𝑦𝑧−1

𝑦𝑧

) + 1

(

 
 
 
 
 
 

−
50

39
0 0

2

39

0
25

23
0

1

3

0 0
150

197
−

18

197

0 0 0
12

25 )

 
 
 
 
 
 

(

𝑓𝑧+1

𝑓𝑧+2

𝑓𝑧+3

𝑓𝑧+4

) + 1(

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)(

𝑓𝑧−3

𝑓𝑧−2

𝑓𝑧−1

𝑓𝑧

) 

where 

𝑇2
(3)

=

(

 
 
 

1 −
23

13

17

39
0

−6 1
38

9
0

99

197
−

279

197
1 0

−
16

25

36

25
−

48

25
1)

 
 
 

,  𝑇1
(3)

=

(

 
 
 

0 0 0
1

3

0 0 0
7

9

0 0 0 −
17

197

0 0 0
3

25 )

 
 
 

, 𝐷2
(3)

=

(

 
 
 
 

−
50

39
0 0

2

39

0
25

23
0

1

3

0 0
150

197
−

18

197

0 0 0
12

25 )

 
 
 
 

 

 

In this case, the first characteristic polynomial is stated as 

𝜂(𝑟) = 𝑑𝑒𝑡 (𝑟𝑇2
(3)

− 𝑇1
(3)

) 

|𝑟𝑇2
(3)

− 𝑇1
(3)

| = 0                                                                                                                                                                                                                            (19) 
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Now we have, 

𝜂(𝑟) =

|

|

|

𝑟

(

 
 
 
 
 

1 −
23

13

17

39
0

−6 1
38

9
0

99

197
−

279

197
1 0

−
16

25

36

25
−

48

25
1)

 
 
 
 
 

−

(

 
 
 
 
 

0 0 0
1

3

0 0 0
7

9

0 0 0 −
17

197

0 0 0
3

25 )

 
 
 
 
 

|

|

|

=

|

|

|

(

 
 
 
 
 

𝑟 −
23

13
𝑟

17

39
𝑟 0

−6𝑟 𝑟
38

9
𝑟 0

99

197
𝑟 −

279

197
𝑟 𝑟 0

−
16

25
𝑟

36

25
𝑟 −

48

25
𝑟 𝑟)

 
 
 
 
 

−

(

 
 
 
 
 

0 0 0
1

3

0 0 0
7

9

0 0 0 −
17

197

0 0 0
3

25 )

 
 
 
 
 

|

|

|

 

⇒ η(r) =

(

 
 
 
 
 

𝑟 −
23

13
𝑟

17

39
𝑟 −

1

3

−6𝑟 𝑟
38

9
𝑟 −

7

9
99

197
𝑟 −

279

197
𝑟 𝑟

17

197

−
16

25
𝑟

36

25
𝑟 −

48

25
𝑟 𝑟 −

3

25)

 
 
 
 
 

 

The following are obtained using Maple (18) software, 

η(r) = −
10000

2561
r4 −

10000

2561
𝑟3 

⇒ −
10000

2561
r4 −

10000

2561
𝑟3 = 0 

⇒ r1 = −1, r2 = 0, r3 = 0, r4 = 0. Since |rs| ≤ 1 s= 1, 2, 3,4, the discrete schemes in (16) is zero stable. 

 

3.4. Convergence 

Theorem 2: The necessary and sufficient condition for a linear multistep method to be convergent is that it must be consistent and zero stable 

as stated by [21]. Since the discrete schemes (10), (13) and (16) are both consistent and zero stable, therefore the method is convergent. 

 

3.5. Region of Absolute Stability 

The regions of absolute stability of the numerical methods for SDDEs are considered. We considered finding the M - and R -stability by applying 

(10), (13) and (16) to the DDEs of this form 

𝑑𝑋(𝑡) = 𝛼(𝑋(𝑡), 𝑋(𝑡 − 𝜏), 𝑡)𝑑𝑡 + 𝛽(𝑋(𝑡), 𝑋(𝑡 − 𝜏), 𝑡)𝑑𝑊(𝑡)  for 𝑡 > 𝑡0, 𝜏 > 0 

𝑋(𝑡) = 𝜉(𝑡), for 𝑡 ≤ 𝑡0                                                                                                                                                                                                                (20) 

 

where 𝜉(𝑡) is the initial function, 𝛼, 𝛽 are complex coefficients, 𝜏 = 𝑤𝑙, 𝑤 ∈ 𝑍+, 𝑙 is the step size and 𝑤 =
𝜏

𝑙
, 𝑤 is a positive integer. Let 𝐴1 =

𝑙𝛼 and 𝐴2 = 𝑙𝛽, then from (10) let 

𝑦𝑧+2 = (
𝑦𝑧+1

𝑦𝑧+2
), 𝑦𝑧 = (

𝑦𝑧−1

𝑦𝑧
), 𝐹𝑧+2 = (

𝑓𝑧+1

𝑓𝑧+2
) and 𝐹𝑧 = (

𝑓𝑧−1

𝑓𝑧
) 

Since 

𝑇2
(1)

= (
1 0
0 1

), 𝑇1
(1)

= (
0 −1

0
1

3

) and 𝐷2
(1)

= (

3

2
−

1

2

0
2

3

) 

we have, 

𝑇2
(1)

𝑌𝑧+2 = 𝑇1
(1)

𝑌𝑧+1 − 1∑𝐷𝑖
(1)

2

𝑖=1

𝐹𝑧+𝑖                                                                                                                                                                                          (21) 

Applying the same technique for (13), we have 

𝑦𝑧+3 = (

𝑦𝑧+1

𝑦𝑧+2

𝑦𝑧+3

), 𝑦𝑧 = (

𝑦𝑧−2

𝑦𝑧−1

𝑦𝑧

), 𝐹𝑧+3 = (

𝑓𝑧+1

𝑓𝑧+2

𝑓𝑧+3

) and 𝐹𝑧 = (

𝑓𝑧−2

𝑓𝑧−1

𝑓𝑧

) 

Since 

𝑇2
(2)

= (

1 2 0

−
28

23
1 0

9

11
−

18

11
1

), 𝑇1
(1)

= (

0 0 1

0 0
5

23

0 0 −
2

11

) and 𝐷2
(2)

=

(

 
 

−
11

4
0 −

1

4

0
22

23
−

4

23

0 0
6

11 )

 
 

 

we have, 

𝑇2
(2)

𝑌𝑧+2 = 𝑇1
(2)

𝑌𝑧+1 − 1∑𝐷𝑖
(2)

2

𝑖=1

𝐹𝑧+𝑖                                                                                                                                                                                          (22) 
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Applying the same approach for (16), we have 

𝑦𝑧+4 = (

𝑦𝑧+1

𝑦𝑧+2

𝑦𝑧+3

𝑦𝑧+4

), 𝑦𝑧 = (

𝑦𝑧−3

𝑦𝑧−2

𝑦𝑧−1

𝑦𝑧

), 𝐹𝑧+4 = (

𝑓𝑧+1

𝑓𝑧+2

𝑓𝑧+3

𝑓𝑧+4

) and 𝐹𝑧 = (

𝑓𝑧−3

𝑓𝑧−2

𝑓𝑧−1

𝑓𝑧

) 

Since 

𝑇2
(3)

(

 
 
 

1 −
23

13

17

39
0

−6 1
38

9
0

99

197
−

279

197
1 0

−
16

25

36

25
−

48

25
1)

 
 
 

, 𝑇2
(3)

=

(

 
 
 

0 0 0
1

3

0 0 0
7

9

0 0 0 −
17

197

0 0 0
3

25 )

 
 
 

 and 𝐷2
(3)

=

(

 
 
 
 

−
50

39
0 0

2

39

0
25

23
0

1

3

0 0
150

197
−

18

197

0 0 0
12

25 )

 
 
 
 

 

we have, 

𝑇2
(3)

𝑌𝑧+2 = 𝑇1
(3)

𝑌𝑧+1 − 1∑𝐷𝑖
(3)

2

𝑖=1

𝐹𝑧+𝑖                                                                                                                                                                                          (23) 

From [22], the polynomials of M- and R- stability are constructed by applying (21), (22) and (23) to (20) and (10), (13) and (16) to (20) as 

presented below 

𝜆(1)(𝜇) = 𝑑𝑒𝑡 [(𝑇2
(1)

− 𝐴1𝐷2
(1)

) 𝜇2+𝑤 − (𝑇1
(1)

− 𝐴1𝐷1
(1)

) 𝜇1+𝑤 − 𝐴2 ∑𝐷𝑖
(1)

𝜇𝑣

2

𝑖=1

] 

𝜆(2)(𝜇) = 𝑑𝑒𝑡 [(𝑇2
(2)

− 𝐴1𝐷2
(2)

) 𝜇2+𝑤 − (𝑇1
(2)

− 𝐴1𝐷1
(2)

) 𝜇1+𝑤 − 𝐴2 ∑𝐷𝑖
(2)

𝜇𝑣

2

𝑖=1

] 

𝜆(3)(𝜇) = 𝑑𝑒𝑡 [(𝑇2
(3)

− 𝐴1𝐷2
(3)

) 𝜇2+𝑤 − (𝑇1
(3)

− 𝐴1𝐷1
(3)

) 𝜇1+𝑤 − 𝐴2 ∑𝐷𝑖
(3)

𝜇𝑣

2

𝑖=1

]  𝑎𝑛𝑑 

𝜌(1)(𝜇) = 𝑑𝑒𝑡 [𝑇2
(1)

𝜇2+𝑤 − 𝑇1
(1)

𝜇1+𝑤 − 𝐴2 ∑𝐷𝑖
(1)

𝜇𝑣

2

𝑖=1

] 

𝜌(2)(𝜇) = 𝑑𝑒𝑡 [𝑇2
(2)

𝜇2+𝑤 − 𝑇1
(2)

𝜇1+𝑤 − 𝐴2 ∑𝐷𝑖
(2)

𝜇𝑣

2

𝑖=1

] 

𝜌(3)(𝜇) = 𝑑𝑒𝑡 [𝑇2
(3)

𝜇2+𝑤 − 𝑇1
(3)

𝜇1+𝑤 − 𝐴2 ∑𝐷𝑖
(3)

𝜇𝑣

2

𝑖=1

] 

          

 

 

 

 

 

 

 

 

 
Fig. 1. The M - stability region of the schemes in (10) 

 
Fig. 2. The M - stability region of the schemes in (13) 

 

 
Fig. 3. The M - stability region of the schemes in (16) 
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then the M- and R- stability of (10), (13) and(16) for 𝑤 = 1 are investigated, plotted and presented in figure 1 to 6 using of Maple 18 and 

MATLAB. The M -stability regions in Figs 1 to 3 lie inside the open-ended region while the R –stability regions in Figs 4 to 6 lie inside the 

enclosed region. 

 

4. Formulation and Implementation of the Two New Mathematical Expressions for the Evaluations of the 

Delay Terms 

Here, we shall formulate two accurate and efficient mathematical expressions for the evaluation of the delay terms on the drift and the noise 

term on the diffusion part of the stochastic delay differential equations. The delay term (𝑡 − 𝜏) shall be evaluated with the accurate and 

efficient formula of this form 

 

𝜉𝑛+𝑗(𝑡) =
𝑛

𝑐
((𝑐𝑞 + (𝑛 + 𝑗 − 𝑟 − 1)ℎ)), 𝑐 ≠ 0                                                                                                                                                                         (24) 

 

Also, we formulated an expression using normalized Brownian Motion to evaluate the noise term 𝑑𝑊(𝑡) such that the distribution are 

Gaussian with 𝑁(0,1) whose mean 𝜇 is 0 and the standard deviation 𝜎 is 1. The random process is expressed as 

 

𝑊(𝑡) =
1

√((𝑛 + 𝑗 − 𝑟 − 1)ℎ)𝜋

𝑒 _𝑡
2

(𝑛 + 𝑗 − 𝑟 − 1)ℎ⁄ , 𝑓𝑜𝑟 𝑡 ≥ 0                                                                                                                                 (25)  

 

Then by differentiating (22), it gives 

 

𝑑𝑊(𝑡) =
−2𝑡

(𝑛 + 𝑗 − 𝑟 − 1)ℎ√((𝑛 + 𝑗 − 𝑟 − 1)ℎ)𝜋

𝑒 _𝑡
2

(𝑛 + 𝑗 − 𝑟 − 1)ℎ⁄ , 𝑓𝑜𝑟 𝑡 ≥ 0                                                                                                 (26) 

 

where 𝑗 ∈ (−𝑘, 𝑘), 𝑘 is a step number, 𝑟 =
𝜏

𝑙
∈ 𝑍, 𝜏 = 𝑟𝑙, 𝜏 is the delay term, 𝑧 = 0,1,2, … . , 𝑍 − 1 and 𝑍 is the number of solutions in the 

giving interval which is implemented to approximate the delay term (𝜏) at the point 𝑡 = 𝑡𝑧 − 𝜏 using the previous values of 𝜉𝑧+𝑗 = 𝜑(𝑡) at 

𝑡𝑧 − 𝜏 ≤ 0 whenever 𝑡𝑧 − 𝜏 > 𝑡0 where 𝜉𝑧+𝑗(𝑡) is the approximation to 𝑦(𝑡𝑧 − 𝜏). The results of the above expressions in (21) and (23) shall 

be obtained using Maple 18 with 𝑧 = 0,1,2,… . , 𝑍 − 1  which shall be incorporated into the SDDEs before its evaluation at constant step size 𝑙 

to obtain the numerical solutions of 𝑦𝑧. 

 

 
Fig. 4. The R - stability region of the schemes in (10) 

 
Fig. 5. The R - stability region of the schemes in (13) 

 
Fig. 6. The R - stability region of the schemes in (16) 
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5. Numerical Computations 

In this section, the delay term and the noise term shall be evaluated using the two expressions formulated in section four above which shall be 

incorporated into some stochastic delay differential equations before its evaluation with the discrete schemes (10), (13) and (16) at constant 

step size to obtain its numerical solutions of 𝑦𝑧. 

 

5.1. Numerical Problems 

Problem 1 

𝑑𝑋(𝑡) = −1000(𝑋(𝑡) + 𝑋 (𝑡 − (𝐼𝑛(1000 − 1))))𝑑𝑡 + (𝑋(𝑡) + 𝑋 (𝑡 − (𝐼𝑛(1000 − 1))))𝑑𝑊(𝑡), 0 ≤ 𝑡 ≤ 3  

 

𝜉(𝑡) = 𝑒−𝑡 ,    𝑡 ≤ 0 

 

Exact Solution is 𝜉(𝑡) = 𝑒−𝑡 

 

Problem 2 

𝑑𝑋(𝑡) = −1000(𝑋(𝑡) + 997𝑒−3𝑋(𝑡 − 1) + (1000 − 997𝑒−3))𝑑𝑡 + (𝑋(𝑡) + 997𝑒−3𝑋(𝑡 − 1) + (1000 − 997𝑒−3))𝑑𝑊(𝑡), 0 ≤ 𝑡 ≤ 3  

 

𝜉(𝑡) = 1 + 𝑒−3𝑡 ,    𝑡 ≤ 0 

 

Exact Solution is 𝜉(𝑡) = 1 + 𝑒−3𝑡 

 

The above problems were solved using the discrete schemes (10), (13) and (16) as generated by the Block Backward Differentiation Formulae 

Methods (BBDFMs) and the results obtained are presented in tables 1 to 2. 

 

 

Table 1. Solution of Problem 1 using the BBDFM for Step Numbers k = 2, 
3 & 4 

t 
Exact 
Solution 

Numerical 
Solution K = 2 

Numerical 
Solution K = 3 

Numerical 
Solution K = 4 

0.1  0.904837418  0.989721979  0.989795572  0.989834933 
0.2  0.818730753  0.975408765  0.97530279  0.975272659 
0.3  0.740818221  0.9516706  0.96061934  0.960690853 
0.4  0.670320046  0.936658324  0.919486611  0.946484521 
0.5 0.60653066  0.88037731  0.904403141  0.879622773 
0.6  0.548811636  0.863394864  0.891872587  0.86457778 
0.7  0.496585304  0.782513608  0.78247501  0.852397377 
0.8  0.449328964  0.764636565  0.765831259  0.838628718 
0.9  0.40656966  0.668308945  0.757776391  0.668360541 
1  0.367879441  0.650583746  0.608806279  0.652582126 
1.1  0.332871084  0.548435037  0.592588258  0.644933964 
1.2  0.301194212  0.531806288  0.588560073  0.632108604 
1.3  0.272531793  0.432450784  0.433079062  0.43310202 
1.4  0.246596964  0.417642641  0.419008082  0.419651106 
1.5  0.22313016  0.32765197  0.417878601  0.415887702 
1.6  0.201896518  0.31510572  0.281676027  0.405822446 
1.7  0.182683524  0.238536316  0.27072879  0.239390617 
1.8  0.165298888  0.228405613  0.271224107  0.229902429 
1.9  0.149568619  0.166864098  0.167511394  0.228581313 
2  0.135335283  0.159057885  0.159838526  0.221901369 
2.1  0.122456428  0.112160267  0.160929513  0.112881121 
2.2  0.110803158  0.106414411  0.091089721  0.107295817 
2.3  0.100258844  0.072440919  0.08622929  0.107083658 
2.4  0.090717953  0.068397676  0.087293898  0.10332957 
2.5  0.082084999  0.044957145  0.045294506  0.045414953 
2.6  0.074273578  0.042235407  0.04250546  0.042656512 
2.7  0.067205513  0.026809236  0.043289802  0.042760171 
2.8  0.060810063  0.025055625  0.020596592  0.040971772 
2.9  0.05502322  0.015361802  0.019144331  0.015592349 
3  0.049787068  0.014279918  0.019627045  0.014445331 

CPU time of BBDFM for k = 2 is 0.10s, k = 3 is 0.05s and k = 4 is 0.003s 

 

Table 2. Solution of Problem 1 using the BBDFM for Step Numbers k = 2, 
3 & 4 

t 
Exact 
Solution 

Numerical 
Solution K = 2 

Numerical 
Solution K = 3 

Numerical 
Solution K = 4 

0.1  1.740818221  1.965585557  1.965738898  1.965821629 
0.2  1.548811636  1.92416048  1.92393967  1.92387634 
0.3  1.40656966  1.858799456  1.883140294  1.883290605 
0.4  1.301194212  1.81889159  1.775134208  1.844819954 
0.5 1.22313016  1.681207706  1.737585379  1.679377214 
0.6  1.165298888  1.641972392  1.707787389  1.644900542 
0.7  1.122456428  1.480188613  1.480405217  1.618426822 
0.8  1.090717953  1.44684004  1.44916074  1.588725806 
0.9  1.067205513  1.30130178  1.436567278  1.302203337 
1  1.049787068  1.276536298  1.229779891  1.279401231 
1.1  1.036883167  1.168875114  1.210017712  1.270770391 
1.2  1.027323722  1.152757329  1.207639581  1.253602103 
1.3  1.020241911  1.085298279  1.086313602  1.086664816 
1.4  1.014995577  1.076084293  1.076817528  1.077245903 
1.5  1.011108997  1.039739049  1.077623435  1.076116241 
1.6  1.008229747  1.035104685  1.027304664  1.069703526 
1.7  1.006096747  1.018120617  1.023828629  1.018722861 
1.8  1.004516581  1.016067265  1.024647808  1.016305042 
1.9  1.003345965  1.009146145  1.009356305  1.016422531 
2  1.002478752  1.008343981  1.008384576  1.014890003 
2.1  1.001836305  1.0058756  1.00872226  1.006006286 
2.2  1.001360368  1.005599103  1.005253738  1.005623912 
2.3  1.001007785  1.004826728  1.005045763  1.005683661 
2.4  1.000746586  1.004742595  1.005135404  1.005452772 
2.5  1.000553084  1.004530177  1.004541355  1.004545624 
2.6  1.000409735  1.004507568  1.004507183  1.004508728 
2.7  1.000303539  1.004456157  1.004524052  1.004516996 
2.8  1.000224867  1.00445079  1.004446569  1.004495414 
2.9  1.000166586  1.004439829  1.004442244  1.004440854 
3  1.00012341  1.004438703  1.004444583  1.004438708 

CPU time of BBDFM for k = 2 is 0.12s, k = 3 is 0.06s and k = 4 is 0.002s 
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6. Results and Discussions 

Here, the numerical solutions obtained after solving some SDDEs using the schemes derived in (10), (13) and (16) shall be analyzed by 

computing their absolute errors. 

 

6.1. Analysis of Results 

The analysis of results is obtained by determining absolute differences of the exact solutions and the numerical solutions. The results are 

presented in the tables 3 to 4. 

 

6.2. Comparison of Results 

In order to determine the accuracy, efficiency and advantage of our method BBDFM over other existing methods, we shall compare the 

methods in two ways using the following notations 

BBDFM = Block Backward Differentiation Formulae Methods (BBDFMs) for step numbers k = 2, 3 and 4. 

CSSEMM = Continuous Split-Step Scheme Euler-Maruyama Method for step numbers k = 2, 3 and 4 in [1]. 

EMM = Euler-Maruyama Method for step numbers k = 2, 3 and 4 in [3]. 

MAXE = Maximum Error. The maximum error (MAXE) is the highest value of the absolute error for total number of steps taken and the 

numerical method with the highest Maximum Error is the method that performs better. 

 

6.2.1. Comparison of our Method BBDFM with other Numerical Methods Applied in Solving Stochastic Delay Differential Equations using 

Interpolation Techniques in Evaluating the Delay Terms (Table 5, 6) 

Table 5. Comparison between the Maximum Errors of our method BBDFM k = 2, 3 and 4 with [1, 3] for constant step size l = 0.01 for Problem 1 

Numerical Method COMPARED MAXEs with [1,3] 

BBDFM MAXE for k = 2 3.15E-01 
BBDFM MAXE for k = 3 3.51E-01 
BBDFM MAXE for k = 4 3.89E-01 
CSSEMM MAXE for k = 2 4.76E-02 
CSSEMM MAXE for k = 3 9.17E-02 
CSSEMM MAXE for k = 4 1.62E-01 
EMM MAXE for k = 2 1.84E-02 
EMM MAXE for k = 3 4.04E-03 
EMM MAXE for k = 4 9.73E-04 

Table 3. Absolute Errors of BBDFM for k = 2, 3 and 4 using Problem 1 

t k = 2 Error  k = 3 Error  k = 4 Error 

0.1  0.084884561  0.084958154  0.084997515 
0.2  0.156678012  0.156572037  0.156541906 
0.3  0.21085238  0.219801119  0.219872632 
0.4  0.266338278  0.249166565  0.276164475 
0.5 0.273846651  0.297872481  0.273092113 
0.6  0.314583227  0.343060951  0.315766144 
0.7  0.285928304  0.285889706  0.355812073 
0.8  0.315307601  0.316502295  0.389299754 
0.9  0.261739285  0.351206732  0.261790881 
1  0.282704304  0.240926838  0.284702685 
1.1  0.215563953  0.259717174  0.312062881 
1.2  0.230612076  0.287365861  0.330914392 
1.3  0.159918991  0.160547269  0.160570227 
1.4  0.171045677  0.172411118  0.173054142 
1.5  0.104521809  0.194748441  0.192757542 
1.6  0.113209202  0.079779509  0.203925928 
1.7  0.055852792  0.088045266  0.056707093 
1.8  0.063106725  0.105925219  0.064603541 
1.9  0.017295479  0.017942775  0.079012694 
2  0.023722601  0.024503243  0.086566085 
2.1  0.010296162  0.038473085  0.009575307 
2.2  0.004388747  0.019713437  0.003507341 
2.3  0.027817925  0.014029554  0.006824814 
2.4  0.022320278  0.003424056  0.012611617 
2.5  0.037127854  0.036790493  0.036670046 
2.6  0.032038171  0.031768118  0.031617066 
2.7  0.040396277  0.023915711  0.024445342 
2.8  0.035754438  0.04021347  0.019838291 
2.9  0.039661418  0.035878889  0.039430871 
3  0.03550715  0.030160023  0.035341738 

 

Table 4. Absolute Errors of BBDFM for k = 2, 3 and 4 using Problem2 

t k = 2 Error  k = 3 Error  k = 4 Error 

0.1  0.224767336  0.224920677  0.225003408 
0.2  0.375348844  0.375128034  0.375064704 
0.3  0.452229796  0.476570634  0.476720945 
0.4  0.517697378  0.473939996  0.543625742 
0.5 0.458077546  0.514455219  0.456247054 
0.6  0.476673504  0.542488501  0.479601654 
0.7  0.357732185  0.357948789  0.495970394 
0.8  0.356122087  0.358442787  0.498007853 
0.9  0.234096267  0.369361765  0.234997824 
1  0.22674923  0.179992823  0.229614163 
1.1  0.131991947  0.173134545  0.233887224 
1.2  0.125433607  0.180315859  0.226278381 
1.3  0.065056368  0.066071691  0.066422905 
1.4  0.061088716  0.061821951  0.062250326 
1.5  0.028630052  0.066514438  0.065007244 
1.6  0.026874938  0.019074917  0.061473779 
1.7  0.01202387  0.017731882  0.012626114 
1.8  0.011550684  0.020131227  0.011788461 
1.9  0.00580018  0.00601034  0.013076566 
2  0.005865229  0.005905824  0.012411251 
2.1  0.004039295  0.006885955  0.004169981 
2.2  0.004238735  0.00389337  0.004263544 
2.3  0.003818943  0.004037978  0.004675876 
2.4  0.003996009  0.004388818  0.004706186 
2.5  0.003977093  0.003988271  0.00399254 
2.6  0.004097833  0.004097448  0.004098993 
2.7  0.004152618  0.004220513  0.004213457 
2.8  0.004225923  0.004221702  0.004270547 
2.9  0.004273243  0.004275658  0.004274268 
3  0.004315293  0.004321173  0.004315298 
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Table 6. Comparison between the Maximum Errors of our method BBDFM k =2, 3 and 4 with [1, 3] for constant step size l = 0.01 for Problem 2 

Numerical Method COMPARED MAXEs with [1,3] 

BBDFM MAXE for k = 2 5.18E-01 
BBDFM MAXE for k = 3 5.42E-01 
BBDFM MAXE for k = 4 5.44E-01 
CSSEMM MAXE for k = 2 3.18E-02 
CSSEMM MAXE for k = 3 5.90E-02 
CSSEMM MAXE for k = 4 5.90E-02 
EMM MAXE for k = 2 1.09E-01 
EMM MAXE for k = 3 4.91E-02 
EMM MAXE for k = 4 2.44E-02 

 

6.2.2. Comparison of our Method with other Numerical Methods Applied in Solving First Order Delay Differential Equations Using the 

Formula Developed by [16] in Evaluating the Delay Term (Tables 7, 8) 

In this section, the notations used are stated as follows 

ESDBBDFM = Extended Second Derivative Block Backward Differentiation Formulae Method for step numbers k = 2, 3 and 4 in [11] 

RBBDFM = Reformulated Block Backward Differentiation Formulae Methods for step numbers k = 3 and 4 in [16]. 

 

Table 7. Comparison between the Maximum Errors of our Method BBDFM k = 2, 3 and 4 and [11, 16] for constant step size l = 0.01 for Problem 1 

Numerical Method COMPARED MAXEs with [11,16] 

BBDFM MAXE for k = 2 3.15E-01 
BBDFM MAXE for k = 3 3.51E-01 
BBDFM MAXE for k = 4 3.89E-01 
ESDBBDFM MAXE for k = 2 5.04E-02 
ESDBBDFM MAXE for k = 3 6.69E-02 
ESDBBDFM MAXE for k = 4 7.09E-02 
RBBDFM MAXE for k = 3 1.54E-09 
RBBDFM MAXE for k = 4 1.04E-09 

 
Table 8. Comparison between the Maximum Errors of our Method BBDFM k = 2, 3 and 4 and [11, 16] for constant step size l = 0.01 for Problem 2 

Numerical Method COMPARED MAXEs with [11,16] 

BBDFM MAXE for k = 2 5.18E-01 
BBDFM MAXE for k = 3 5.42E-01 
BBDFM MAXE for k = 4  5.44E-01 
ESDBBDFM MAXE for k = 2 2.08E-03 
ESDBBDFM MAXE for k = 3 1.91E-03 
ESDBBDFM MAXE for k = 4 3.43E-03 
RBBDFM MAXE for k = 3 4.88E-06 
RBBDFM MAXE for k = 4 4.38E-06 

 

7. Conclusions 

In this study, we have shown that Backward Differentiation Formulae Methods (BBDFMs) can be used to solve Stochastic Delay Differential 

Equations (SDDEs) using the two new expressions as formulated in section four above (24) and (26) for evaluations of the delay term and the 

noise term. To prove the advantage of the method BBDFM, we compare the performances of our method with other existing methods which 

revealed that BBDFM performed better in terms of efficiency, accuracy, consistency, convergence and region of absolute stability at constant 

step size 𝑙 as showed in table 5 to 6. Also, it was observed in tables 1 to 2 that the discrete schemes of higher step number k = 4 of BBDFM 

performed slightly better and faster than the lower step numbers of k = 2 and 3 when compared with the exact solutions. Hence, it is 

recommended that BBDFM schemes for step numbers k = 2, 3, and 4 are suitable for solving SDDEs. Further research should be carried-out for 

step numbers k = 5, 6, 7… on the construction of discrete schemes of BBDFM for numerical solutions of SDDEs. 
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