
DOI:10.36686/Ariviyal.NAAM.2020.01.01.003 Numer. Anal. Appl. Math., 2020, 1(1), 27-32.

Maximum Norm a Posteriori Error Estimation for a Sys-
tem of Singularly Perturbed Semilinear Reaction-Diffusion
Equations

Ying Liang,a Xiaobing Baob and Li-Bin Liu*a

aSchool of Mathematics and Statistics, Nanning Normal University, Nanning 530023, Guangxi, P. R. China
bSchool of Big Data and Artificial Intelligence, Chizhou University, Chizhou 247000, Anhui, P. R.China

*Corresponding author E-mail address: liulibin969@nnnu.edu.cn (Li-Bin Liu)

ISSN: 2582-8274

Publication details
Received 26th May 2020
Revised 16th June 2020
Accepted 17th June 2020
Published 26th June 2020

Abstract: In this paper, a system of singularly perturbed semilinear reaction-diffusion equations is discretized
on an arbitrary nonuniform mesh using an upwind finite difference scheme. Based on the quadratic polynomial
interpolation function, a second-order maximum norm a posteriori error estimation is derived. Then, this bound
is used to design an adaptive grid generation algorithm. Numerical results are given to verify the effectiveness of
the presented adaptive grid method.

Keywords: singularly perturbed; reaction-diffusion; adaptive grid; a posteriori error estimation

1. Introduction

THis paper is devoted to the problem of finding a numerical approximation to the solution u = (u1, · · · , um)T ∈ (C2(0, 1)∩C[0, 1])m

of the following system of singularly perturbed semilinear reaction-diffusion equations

Lu ≡ −εu′′ + a(x,u) = f, x ∈ Ω = (0, 1), (1)

u(0) = p,u(1) = q, (2)

where 0 < ε � 1 is a perturbation parameter and a(x,u) = (a1(x,u), · · · , am(x,u))T , f = (f1, · · · , fm)T are given function vectors.
The source terms fj ∈ C(Ω̄), j = 1, · · · ,m. For all (x,u) ∈ Ω̄×Rm and a given constant α, we assume that the nonlinear term a(x,u)

satisfies

∂ai
∂ui

>

m∑
j 6=i,j=1

∣∣∣∣ ∂ai∂uj

∣∣∣∣ > 0, for 1 ≤ i ≤ m, (3)

∂ai
∂uj
≤ 0, for i 6= j,

m∑
j=1

∂ai
∂uj

> α > 0, i = 1, · · · ,m. (4)

It is well known that system of singularly perturbed problems are widespread in optimal control problem[1] and in the mod-
eling of resistance-capacitor electrical circuits. Over the last decades, some special numerical approaches for linear system of sin-
gularly perturbed reaction-diffusion equations have been discussed in the literature (see, e.g.,[3, 4, 5, 6, 7, 8, 9, 10]). Meanwhile, many
researchers[11, 12, 13] developed some layer-adapted mesh methods for the system of semilinear singularly perturbed reaction-diffusion
equations.

As far as we know, adaptive grid methods based on an a posteriori error estimation have already been applied to scalar singularly
perturbed problems by several researchers (e.g.,[14, 15, 16]). Meanwhile, these approaches were also widely used in solving the system
of singularly perturbed differential equations[17, 18, 19] The numerical method based on the adapted a posteriori mesh for a system of
singularly perturbed reaction-diffusion equations are not found in the literature to the best of our knowledge.

This paper is concerned with the numerical scheme based on a reliable a posteriori mesh for the problem (1)-(2). An upwind
finite difference scheme is constructed on an arbitrary nonuniform mesh. A posteriori error analysis in the maximum norm is derived
based on the polynomial interpolation technique and the stability result for the exact solution u(x). Based on this a posteriori error
estimation and mesh equidistribution principle, a suitable monitor function is chosen to design an adaptive grid algorithm. Numerical
results are provided to support our theoretical estimation. Notations. Throughout this paper, let C be a generic positive constant that
is independent of perturbation parameter ε and mesh parameter N . It may take different values in different place.
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In our estimates, we use the L∞ norm defined by ‖v‖∞,Ω̄ = ess sup
x∈Ω̄

|v(x)|, where ess sup denotes the essential supremum. For vector-

valued function v = (v1(x), · · · , vm(x))T ,we define ‖v‖∞,Ω̄ = max{‖v1‖∞,Ω̄, · · · , ‖vm‖∞,Ω̄}. For a real-valued mesh function ϕ :=

{ϕ(xi)}Ni=0, define the discrete maximum norm ‖ϕ‖∞ = max
i=0,1,··· ,N

|ϕ(xi)|. For vector mesh functions V := {(V1(xi), · · · , Vm(xi))
T }Ni=0,

we set ‖V‖∞ = max{‖V1‖∞, · · · , ‖Vm‖∞}.

2. Preliminary results

Since the differential operator L is a nonlinear operator, we first give the linearized form of the problem (1) as follows:

Lu ≡ −εu′′ + B(x)u(x) = −a(x,0) + f, x ∈ Ω = (0, 1), (5)

where B(x) = ∂a(x,γu)
∂u , 0 < γ < 1. Since the differential operator L satisfies a maximum principle (see Theorem 1 of [2]) the problem

(1)-(2) has a unique solution u = (u1, · · · , um)T . Furthermore, we have the following stability result for the exact solution u.

Lemma 2.1. Let u(x) be the solution of the problem (1)-(2). Then

‖u‖∞,Ω̄ ≤ max {‖u(0)‖∞, ‖u(1)‖∞}+
1

α

(
‖a(·, 0)‖∞,Ω̄ + ‖f‖∞,Ω̄

)
. (6)

Proof. The proof is given in [2, Corollary 2].

Corollary 2.1.1. For any two function vectors v(x) and w(x) satisfying

v(0) = w(0), v(1) = w(1)

and

Lv(x)− Lw(x) = F(x),

where F(x) is bounded piecewise continuous function vector, we have

‖v−w‖∞,Ω̄ ≤
1

α
‖Lv− Lw‖∞,Ω̄. (7)

Let Ω̄N = {0 = x0 < x1 < · · · < xN = 1} be an arbitrary nonuniform mesh, where N is a positive even discretization parameter.
For 1 ≤ i ≤ N , let hi = xi − xi−1 be the local grid step and set ~i =

hi+hi+1

2
. For a given mesh function {ωi}Ni=0, let D−ωi =

ωi−ωi−1

hi
, Dωi =

ωi+1−ωi

~i
. Then, the numerical solution U = (U0,U1, · · · ,UN )T ∈

(
RN+1

)m
is required to satisfy the following finite

difference discretization of (1)-(2):

LNUi := −εDD−Ui + a(xi,Ui) = fi, 1 ≤ i ≤ N − 1, (8)

U0 = p, UN = q, (9)

where fi = f(xi), Ui = (U1,i, · · · , Um,i)T . It follows from Corollary 5 of[2] that the difference operator LN satisfies the discrete
maximum principle, which implies the following stability result

‖U‖∞ ≤ max {‖U0‖∞, ‖UN‖∞}+ max
1≤i≤N−1

1

α
(‖a(xi, 0)‖∞ + ‖fi‖∞) . (10)

3. A posteriori error analysis

In this section, we will derive an a posteriori error estimation for the discrete scheme (8)-(9). Let Ũ
N

(x) =
(
ŨN1 (x), · · · , ŨNm (x)

)T
,

and ŨNj (x) be a piecewise quadratic function through points (xi, Uj,i), i = 0, 1, · · · , N , j = 1, · · · ,m. Then for x ∈ Ji = [xi−1, xi],

Ũ
N

(x) can be defined as follows:

Ũ
N

(x) =
1

2
DD−Ui(x− xi−1)(x− xi) +

1

hi
[Ui(x− xi−1) + Ui−1(xi − x)] , 1 ≤ i ≤ N − 1. (11)

For x ∈ JN , we set Ũ
N

(1) = q.
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Theorem 3.1. Let u(x) be the solution of the problem (1)-(2), {Ui}Ni=0 be the solution of the discrete scheme (8)-(9) and Ũ
N

(x) be its
piecewise quadratic function vector defined in (11). Then we have

max
0≤i≤N

‖u(xi)− Ui‖∞ ≤ max
1≤i≤N−1

CQi, (12)

where

Qi = max
1≤j≤m

{∥∥∥aj(·, ŨN (·))− aj(xi,Ui)
∥∥∥
∞,Ji

+ ‖fj(·)− fj(xi)‖∞,Ji

}
, i = 1, · · · , N − 1. (13)

Proof. For any x ∈ Ji(1 ≤ i ≤ N − 1), we have

LN Ũ
N

(x)− Lu(x) = −εDD−Ui + a
(
x, Ũ

N
(x)
)
− f(x)

= fi − a (xi,Ui) + a
(
x, Ũ

N
(x)
)
− f(x),

(14)

where we have used the discrete scheme (8).

It is easy to get u(0) = Ũ
N

(0) = p from (11). Combined with u(1) = Ũ
N

(1) = q, it follows from Corollary 2.1.1 and (14) that∥∥∥u− Ũ
N
∥∥∥
∞,Ji

≤ C
∥∥∥LN Ũ

N
− Lu

∥∥∥
∞,Ji

≤ C
∥∥∥fi − a (xi,Ui) + a

(
·, Ũ

N
(·)
)
− f(·)

∥∥∥
∞,Ji

≤ CQi.

(15)

Furthermore, note that u(xj)− Uj = 0, j = 0, N , we have

max
0≤i≤N

‖u(xi)− Ui‖∞ ≤ max
1≤i≤N−1

∥∥∥u− Ũ
N
∥∥∥
∞,Ji

≤ CQi, (16)

which completes the proof.

4. An adaptive grid algorithm

In this section, an adaptive algorithm can be devised by using the a posteriori error estimation presented in Theorem 3.1. The
mainly process of this algorithm is based on the idea by de Boor.[20] In order to adaptively design a mesh, the local contributions
to the a posteriori error estimator Qi are the same on each mesh interval. In other words, this idea is equivalent to find the points
{(xi, Uj,i)}Ni=0, j = 1, · · · ,m, such that

hiM̄i =
1

N

N∑
k=1

hiM̄i, (17)

where M̄i is a monitor function. Here, similar to [21], we choose the monitor function M̄i =
√
h2
i +Qi, i = 1, · · · , N , where

QN = QN−1. Finally, in order to obtain an adaptive grid and the corresponding numerical solution, the following iteration algorithm
is devised.

Algorithm

Step 1. For a fixed N , let Ω̄
(0)
N =

{
0, 1

N
, · · · , N−1

N
, 1
}

be a initial uniform mesh;

Step 2. For a given mesh Ω̄
(k)
N =

{
x

(k)
i

}N
i=0

and the corresponding computed solution
{

UN,(k)
i

}
. Set M̃ (k)

i =
M̄

(k)
i−1+M̄

(k)
i

2
for i =

1, · · · , N , where M̄ (k)
i is the value of monitor function calculated at the current mesh Ω̄

(k)
N , and set M̄ (k)

0 = M̄
(k)
1 and M̄ (k)

N = M̄
(k)
N−1.

Step 3. Let Φ
(k)
0 = 0 and Φ

(k)
i =

i∑
j=1

M̃j , i = 1, · · · , N , for a given constant C0 > 1, if

max
1≤i≤N

M̃
(k)
i

Φ
(k)
N

≤ C0

N
(18)

holds true, then go to Step 5. Otherwise, continue to Step 4.

Step 4. Let Y (k)
i = iΦ

(k)
N /N for i = 1, · · · , N − 1 and x = ϕ(t) be the piecewise linear interpolation function through knots(

Φ
(k)
i , x

(k)
i

)
. Generate a new mesh Ω̄

(k+1)
N =

{
x

(k+1)
i

}N
i=0

by using equation x(k+1)
i = ϕ

(
Y

(k)
i

)
, i = 1, · · · , N − 1, where x(k)

0 = 0
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and x(k)
N = 1 for k = 0, 1, · · · ,. Return to Step 2.

Step 5. Set x∗i = x
(k)
i and U∗i = UN,(k)

i for i = 0, 1, · · · , N . Stop.

5. Numerical experiments

In this section, we present some numerical results for the following system of singularly perturbed semilinear reaction-diffusion equa-
tions

−εu′′1 + u1 + (u1 − 0.5u2 − 0.5u3)3 = 0.6,

−εu′′2 + u2 + (2u2 − u1 − u3)5 = 0.9,

−εu′′3 + u3 + (u3 − u2)3 = 1,

uj(0) = 0, uj(1) = 0, j = 1, 2, 3.

Since the exact solution of this example is not available, the maximum point-wise errors can be evaluated as follows:

ENε := ‖UNi − U2N
i ‖∞, (19)

where UkNi (k = 1, 2) is the solution of the discrete scheme (8)-(9) calculated on the final mesh {xi}kNi=0 (k = 1, 2) obtained by the
above grid generation algorithm, and U2N (x) is the piece-wise linear interpolation function vector through knots

(
xi,U2N

i

)
. For each

N , we shall compute the parameter-uniform error EN := max
ε
ENε over a wide range of values of ε. The rates of convergence are given

by rNε = log2

(
EN

ε

E2N
ε

)
.

Note that the discrete scheme (8)-(9) is a system of nonlinear equations, we use the Newton’s iteration formula to solve it with 0
as an initial vector. Here the stopping criterion is ‖U(k) −U(k−1)‖∞ ≤ 10−6, where U(k) is the successive approximates to U computed
iteratively, k = 1, · · · ,.

For N = 64, 128, · · · , 2048 and ε = 10−j(j = 0, 1, · · · , 6), the maximum point-wise errors and the rates of convergence obtained
by using the presented adaptive grid method are listed in Table 1 as well as the average rates of convergence r̄Nε . Here, we choose
C0 = 2. It can be seen from Table 1 that with the gradual decrease of ε, the average rates of convergence have almost reached more
than 2. Meanwhile, for the purpose of comparison, the finite difference scheme (8)-(9) on a Shishkin mesh[2] is also used to solve this
test problem, and the numerical results are displayed in Table 2. It is shown from these results that the accuracy of the discrete scheme
(8)-(9) on a priori Shishkin mesh is almost second order, and the convergence order of the presented adaptive grid method is second
order.

In addition, when ε = 10−4 and N = 128, Figure 1(a), which should be read from bottom to top, represents the iteration process
of the above adaptive grid algorithm. Meanwhile, the graph of numerical solution is also plotted in Figure 1(b). Obviously, one can
see from Figure 1 that the solution of this test problem boundary layers at both ends of the interval [0, 1].

Table 1. Numerical results of our adaptive grid method

ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048 r̄Nε
100 1.56e-06 3.91e-07 9.77e-08 2.44e-08 6.11e-09 1.53e-09

2.00 2.00 2.00 2.00 2.00 - 2.00
10−1 4.37e-05 1.09e-05 2.73e-06 6.83e-07 1.71e-07 4.27e-08

2.00 2.00 2.00 2.00 2.00 - 2.00
10−2 2.02e-04 5.60e-05 1.85e-05 5.75e-06 1.75e-06 5.22e-07

1.75 1.70 1.69 1.71 1.75 - 1.72
10−3 2.69e-04 6.42e-05 1.53e-05 3.70e-06 9.10e-07 2.25e-07

2.07 2.07 2.05 2.03 2.01 - 2.05
10−4 1.62e-03 5.75e-04 1.90e-05 4.27e-06 1.00e-06 2.40e-07

1.50 4.92 2.15 2.09 2.06 - 2.54
10−5 1.78e-03 5.43e-04 1.76e-04 8.50e-05 1.19e-06 2.68e-07

1.71 1.63 1.04 6.15 2.15 - 2.54
10−6 1.08e-02 7.59e-04 1.24e-04 7.41e-05 3.80e-05 3.35e-07

3.82 2.62 0.74 0.96 6.82 - 2.99
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Table 2. Numerical results of the Shishkin grid method

ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

100 1.56e-06 3.91e-07 9.77e-08 2.44e-08 6.11e-09 1.53e-09
2.00 2.00 2.00 2.00 2.00 -

10−1 4.37e-05 1.09e-05 2.73e-06 6.83e-07 1.71e-07 4.27e-08
2.00 2.00 2.00 2.00 2.00 -

10−2 2.80e-04 7.02e-05 1.75e-05 4.39e-06 1.10e-06 2.75e-07
1.99 2.00 2.00 2.00 2.00 -

10−3 2.73e-03 6.96e-04 1.75e-04 4.37e-05 1.10e-05 2.74e-06
1.97 1.99 2.00 2.00 2.00 -

10−4 6.33e-03 2.31e-03 7.69e-04 2.45e-04 7.57e-05 2.29e-05
1.45 1.59 1.65 1.69 1.72 -

10−5 6.33e-03 2.31e-03 7.69e-04 2.45e-04 7.57e-05 2.29e-05
1.45 1.59 1.65 1.69 1.72 -

10−6 6.33e-03 2.31e-03 7.69e-04 2.45e-04 7.57e-05 2.29e-05
1.45 1.59 1.65 1.69 1.72 -
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(a) Evolution of the mesh
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Fig. 1. Evolution of mesh and comparison between numerical and exact solution for Example 2.

6. Conclusions

This paper mainly develop an adaptive grid method for a system of singularly perturbed reaction-diffusion equations. Based on the
quadratic polynomial interpolation, we derive an a posteriori error estimation, which is used to construct an adaptive grid algorithm.
It should be pointed out that our presented adaptive grid method can be extended the other singularly perturbed reaction-diffusion
problems.
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