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Abstract: In this paper we consider singularly perturbed reaction diffusion equations with integral boundary
condition. A numerical method based on finite difference scheme on Shishkin mesh is presented. This method
is proved to be almost second order convergent. An error estimate is derived in the discrete norm. Numerical
results are presented, which validate the theoretical results.
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1. Introduction

DIfferential equations with a small parameter ε (0 < ε ≤ 1) multiplying the highest order derivatives are called singularly perturbed
differential equations. Classical numerical methods are inappropriate for singularly perturbed problems because the solutions of

such equations have steep gradients in narrow layer regions of the domain. Therefore, it is important to develop suitable methods to
these problems, whose accuracy does not depend on the parameter ε, that is, methods that are convergent ε-uniformly.[21, 8] One of the
simplest ways to derive such methods consists of using a class of piecewise uniform meshes (Shishkin mesh, Bakhvalov mesh), which
are constructed a priori in function of sizes of parameter ε, the problem data, and the number of corresponding mesh points.

Boundary value problems with integral boundary conditions constitute a very interesting and important class of problems. A class
of boundary value problems with integral boundary conditions have plenty of applications such as in electro chemistry [9] thermo
elasticity,[10] heat conduction[5] etc. The authors of[19, 12, 1] have proved the existence, uniqueness and stability of differential equa-
tions with integral boundary conditions. Boundary value problems involving integral boundary conditions have received considerable
attention in recent years.[14, 13, 6, 3]

So far ordinary differential equations with integral boundary conditions are considered. In the following singularly perturbed
ordinary differential equations with integral boundary conditions will be discussed.

In[11, 4] the authors have considered the following singularly perturbed boundary value problem of the form

ε2u′′(x) + εa(x)u′(x)− b(x)u(x) = f(x), 0 < x < l, (1)

u(0) = µ0, (2)

u(l)−
∫ l1

l0

g(x)u(x)dx = µl, 0 ≤ l0 < l1 ≤ l. (3)

Here µ0 and µl are given constants, a(x), b(x), f(x) and g(x) are smooth functions in [0, l]. They suggested the method of integral
identities using exponential basis functions and interpolating quadrature rules with the weight and remainder term in integral form an
exponentially fitted difference scheme on an uniform mesh is developed which is shown to be ε- uniformly first order accurate in the
discrete maximum norm.

In[2, 20, 7] the authors have considered the following singular perturbation problem with integral boundary condition

εu′(x) + f(t, u) = 0, t ∈ I = (0, T ], T > 0, (4)

u(0) = µu(T ) +

∫ T

0

b(s)u(s)ds+ d, (5)

where µ and d are given constants. In fact, the authors of[2] suggested a uniform finite difference scheme on piecewise uniform
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Shishkin meshes for the above problem and also proved that, this method has almost first order convergence. In[20] the method of
boundary layer function and the Banach fixedpoint theorem, the uniformly valid asymptotic solution of the above problem is obtained.
Zhongdi Cen and Xin Cai[7] proposed a hybrid finite difference scheme on Shishkin mesh.

Mustafa Kudu and Gabil M. Amiraliyev[18] have presented a fitted finite difference method for solving the following singularly
perturbed problem with integral boundary condition

εu′′(x) + a(x)u′(x) = f(x), 0 < x < l, (6)

u′(0) =
µ0

ε
, (7)∫ l

0

d(x)u(x)dx = µ1, (8)

where µi(i = 0, 1) are given constants.
In[15, 16, 17] the authors have considered the following parameterized singular perturbation problem with integral boundary condi-

tion:

εu′(t) + f(t, u, λ) = 0, t ∈ (0, T ), T > 0 (9)

u(0) +

∫ T

0

c(s)u(s)ds = A (10)

u(T ) = B (11)

λ is known as the control parameter, A and B are given constants. In fact, in[15] asymptotic estimates for the solution and its first
derivative have been established. In[17] Mustfa kudu et al. a numerical algorithm based on upwind finite difference operator and an
appropriate piecewise uniform mesh is constructed for the above problem. In[16] a uniform finite difference method is suggested on a
Bakhvalov mesh to solve the above problem.

V. Raja and A. Tamilselvan[23, 22] considered singularly perturbed convection diffusion equations with integral boundary conditions
and they suggested finite difference scheme on equidistant mesh.

This paper is organized as follows. In section 2, the statement of the problem is given. In section 3, some preliminary results like
maximum principle, stability and bounds on the derivatives of the solution for the continuous problem are discussed. The numerical
method is described in section 4. In section 5 the error analysis for approximate solution is presented. In section 6 numerical results
are given. The conclusion is presented in section 7.

2. Statement of the problem
Motivated by the works of, [11, 4, 2, 18, 15, 23, 22, 17] we consider the following singularly perturbed problem with integral boundary condi-
tion:

Lu = −εu′′(x) + b(x)u(x) = f(x), 0 < x < 1, (12)

u(0) = A (13)

L1u(1) = u(1)− ε
1∫

0

g(x)u(x)dx = B (14)

where 0 < ε << 1 is a small positive parameter, A and B are given constants, b(x) ≥ β > 0, x ∈ Ω̄ = [0, 1], g(x) is nonnegative with
1∫
0

g(x)dx < 1 and f(x), b(x) are sufficiently smooth functions on Ω̄. The solution u(x) of problem (12)− (14) has in general boundary

layers at x = 0 and x = 1.
Through out the paper, we assume that

√
ε ≤ CN−1, C denotes a generic positive constant. The supremum norm is used for

studying the convergence of the numerical solution to the exact solution of a singular perturbation problem: ‖u‖D = sup
x∈D
|u(x)|.

3. The continuous problem
We first establish priori bounds for the solution and its derivatives. The differential operator L satisfies the following maximum
principle.

Theorem 3.1. (Maximum Principle) Let ψ(x) ∈ C2(Ω̄) be any function satisfying ψ(0) ≥ 0, L1ψ(1) ≥ 0 and Lψ(x) ≥ 0, ∀x ∈ Ω. Then
ψ(x) ≥ 0, ∀ x ∈ Ω̄.
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Proof. Define
s(x) = x+ 1. (15)

Note that s(x) > 0, ∀x ∈ Ω̄, Ls(x) > 0,∀x ∈ Ω, s(0) > 0 and L1s(1) > 0.
Let µ = max{−ψ(x)

s(x)
: x ∈ Ω̄}. Then there exists x0 ∈ Ω̄ such that ψ(x0) + µs(x0) = 0 and ψ(x) + µs(x) ≥ 0,∀x ∈ Ω̄. Therefore,

the function (ψ + µs) attains its minimum at x = x0. Suppose the theorem does not hold true, then µ > 0.
Case (i): x0 = 0

0 < (ψ + µs)(0) = ψ(0) + µs(0) = 0.

It is a contradiction.
Case (ii): x0 ∈ Ω

0 < L(ψ + µs)(x0) = −ε(ψ + µs)′′(x0) + a(x0)(ψ + µs)(x0) ≤ 0.

It is a contradiction.
Case (iii): x0 = 1

0 < L1(ψ + µs)(1) = (ψ + µs)(1)− ε
1∫

0

g(x)(ψ + µs)(x)dx ≤ 0.

It is a contradiction. Hence the proof of the theorem.

Corollary 3.1.1. (Stability Result) The solution u(x) of problem (12)− (14) satisfies the bound

|u(x)| ≤ C max{|u(0)|, |L1u(1)|, ||f ||}, ∀x ∈ Ω̄. (16)

Proof. Let C > 0 be a constant. Define ψ±(x) = CMs(x) ± u(x), x ∈ Ω̄, where M = max{|u(0)|, |L1u(1)|, ||f ||} and s is a test
function defined by (15).

Further

ψ±(0) = CMs(0)± u(0) > 0,

L1ψ
±(1) = CMs(1)± u(1)− CMε

1∫
0

g(x)s(x)dx± ε
1∫

0

g(x)u(x)dx ≥ 0

and

Lψ±(x) = MCb(x)s(x)± f(x)

≥ MβC ± f(x) ≥ 0

by a proper choice of C. Then by maximum principle, we have ψ±(x) ≥ 0, x ∈ Ω̄. Therefore, |u(x)| ≤ C max{|u(0)|, |L1u(1)|, ||f ||},
∀x ∈ Ω̄.

Bounds for the derivatives of u(x) are given in the following lemma.

Lemma 3.2. Let u(x) be the solution of (12)− (14). Then, for 1 ≤ k ≤ 4,

‖u(k)‖Ω̄ ≤ C(1 + ε−k/2).

Proof. Using corollary 3.1.1 and applying arguments as given in [21] this lemma gets proved.

To derive error estimates, we decompose the solution u(x) into smooth and singular components as

u(x) = v(x) + w(x).

Here v = v0 + εv1, where v0 is the solution of the reduced problem, w is the solution of the homogeneous problem

Lw = 0, w(0) = A− v0(0), L1w(1) = B − L1v0(1) (17)

and, consequently v1 satisfies
Lv1 = v′′0 , v1(0) = 0, L1v1(1) = 0.

Because of the bound on v′′0 , it is clear that v1 is the solution of a problem similar to (12)− (14). This implies that, for 0 ≤ k ≤ 4,

|vk1 (x)| ≤ C(1 + ε−k/2).
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Decompose the singular component as
w = wL + wR,

where the boundary layer functions wL and wR are defined to be solutions of the problems

LwL = 0, wL(0) = w(0), L1wL(1) = 0,

LwR = 0, wR(0) = 0, L1wR(1) = L1w(1).

In the following lemma, we derive bounds for the components of the solution and their respective derivatives.

Lemma 3.3. The regular component v and the singular components wL and wR of the solution u(x) of the problem (12)− (14) satisfy the
following bounds,

|v(k)(x)| ≤ C(1 + ε−(k−2)/2)

|w(k)
L (x)| ≤ Cε−k/2(ε+ e−x

√
β
ε )

|w(k)
R (x)| ≤ Cε−k/2e−(1−x)

√
β
ε , for 0 ≤ k ≤ 4, ∀x ∈ Ω̄.

Proof. Note that v = v0 + εv1, the proof for the bounds on v is an immediate consequence of the above estimates v(k)
0 , v

(k)
1 .

Introduce the functions ψ±(x) = Cε(1 + e−
√
β
ε − e−x

√
β
ε ) ± wL(x) where the constant C is chosen sufficiently large. Then

ψ±(0) ≥ 0,

L1ψ
±(1) = ψ(1)− ε

1∫
0

g(x)ψ(x)dx

≥ C(1− ε
1∫

0

g(x)dx)± L1wL(1) ≥ 0

and

Lψ±(1) ≥ Cb(x)ε(1− e−x
√
β
ε ) ≥ 0.

Hence the maximum principle gives ψ±(x) ≥ 0 and so

|wL(x)| ≤ C(ε+ e−x
√
β
ε ), for all x ∈ Ω̄.

Bounds on the derivatives of wL are established in [21]. By an appropriate choice of barrier function, the bound on the component of
wR is given by

|wR(x)| ≤ Ce−(1−x)
√
β
ε for all x ∈ Ω̄.

Analogous arguments are used to establish the bounds on the derivatives of wR.

4. The discrete problem

On Ω̄ a piecewise uniform Shiskin mesh of N (≥ 4) mesh intervals is constructed. The domain Ω̄ is partitioned into three subintervals
[0, σ], [σ, 1−σ] and [1−σ, 1] where σ is the transition parameter defined by σ = min{ 1

4
, 2
√

ε
β

lnN}. On [0, σ] and [1−σ, 1] a uniform

mesh with N
4

mesh intervals are placed, while [σ, 1 − σ] has a uniform mesh with N
2

mesh intervals. The interior mesh points are
denoted by ΩN . Let hi = xi − xi−1 be the mesh step and h̄i =

hi+1+hi
2

.

The discrete problem corresponding to (12)− (14) is:
Find U such that

LNU = −εδ2U(xi) + b(xi)U(xi) = f(xi), ∀xi ∈ ΩN . (18)

U(x0) = A, (19)

LN1 U(xN ) = U(xN )− ε
N∑
i=1

gi−1Ui−1 + giUi
2

hi = B,∀xi ∈ ΩN . (20)
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where

δ2Zi =
1

h̄i

(
Zi+1 − Zi
hi+1

− Zi − Zi−1

hi

)
,

gi = g(xi), Ui = U(xi).

Theorem 4.1. (Discrete maximum principle) Assume that the mesh function Ψi satisfies Ψ0 ≥ 0, LN1 Ψ(1) ≥ 0 and LNΨi ≥ 0, for all
i, 1 ≤ i ≤ N − 1. Then Ψi ≥ 0, for all i, 0 ≤ i ≤ N .

Proof. Define
S(xi) = xi + 1. (21)

Note that S(xi) > 0, ∀xi ∈ Ω̄N , LNS(xi) > 0, ∀x ∈ ΩN , S(0) > 0 and LN1 S(1) > 0.
Let µ = max{−Ψ(xi)

S(xi)
: xi ∈ Ω̄N}. Then there exists x0 ∈ Ω̄Nτ such that Ψ(x0) + µS(x0) = 0 and Ψ(xi) + µS(xi) ≥ 0, ∀xi ∈ Ω̄N .

Therefore, the function (Ψ + µS) attains its minimum at xi = x0.
Suppose the theorem does not hold true,then µ > 0.

Case (i): x0 = 0

0 < (Ψ + µS)(0) = Ψ(0) + µS(0) = 0

It is a contradiction.
Case (ii): x0 ∈ ΩN

0 < LN (Ψ + µS)(x0) = −εδ2(Ψ + µS)(x0) + bi(Ψ + µS)(x0)

=
−ε
h̄i

(
(Ψ + µS)(x0+1)− (Ψ + µS)(x0)

hi+1
−

(Ψ + µS)(x0)− (Ψ + µS)(x0−1)

hi
) ≤ 0

It is a contradiction because
(Ψ + µS)(x0+1)− (Ψ + µS)(x0) ≥ 0 and (Ψ + µS)(x0)− (Ψ + µS)(x0−1) ≤ 0

Case (iii): x0 = 1

0 < LN1 (Ψ + µS)(1) = (Ψ + µS)(1)−

ε

N∑
i=1

(Ψ + µS)(xi−1)g(xi−1) + (Ψ + µS)(xi)g(xi)

2
hi ≤ 0.

It is a contraction. Hence the proof of the theorem.

Lemma 4.2. (Stability Result) If Φi is any function then

|Φi| ≤ C max

(
sup

1≤j≤N−1
|LNΦj |, |Φ(0)|, |LN1 Φ(1)|

)
, for 0 ≤ i ≤ N. (22)

Proof. Let C > 0 be a constant. Define Ψ±i = CMSi ± Φi, where
M = max( sup

1≤j≤N−1
|LNΦj |, |Φ(0)|, |LN1 Φ(1)|) and S is a test function defined by (21). Then

Ψ±(0) = CMS(0)± Φ(0) > 0.

LN1 Ψ±(1) = Ψ±(1)− ε
N∑
i=1

Ψ±i−1gi−1 + Ψ±i gi

2
hi

= CMS(1)± Φ(1)− ε
N∑
i=1

(CMSi−1 ± Φi−1)gi−1 + (CMSi ± Φi)gi
2

hi

= CMLN1 S(1)± LN1 Φ(1) ≥ 0,

and

LNΨ±i = −εδ2Ψ±i + biΨ
±
i

= −εδ2(CMSi ± Φi) + bi(CMSi ± Φi)

= CMLNSi ± LNΦi ≥ 0.

by a proper choice of C. Then by discrete maximum principle, we have Ψ±i ≥ 0, for 0 ≤ i ≤ N , as required.
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Analogous to the continuous case, the discrete solution U can be decomposed as

U = V +W,

where V and W are respectively, the solutions of the problems

LNV = f(xi), xi ∈ ΩN , V (0) = v(0), LN1 V (1) = L1v(1) (23)

LNW = 0, xi ∈ ΩN , W (0) = w(0), LN1 W (1) = L1w(1). (24)

The singular component W is decomposed as
W = WL +WR,

where WL and WR are defined by
LNWL = 0, WL(0) = wL(0), LN1 WL(1) = 0, (25)

LNWR = 0, WR(0) = 0, LN1 WR(1) = L1WR(1). (26)

5. Error estimates for the solution
We obtain separate error estimates for each component of the numerical solution.

Lemma 5.1. The error in the smooth component of the numerical solution is bounded as

|(V − v)(xi)| ≤ CN−2, for all xi ∈ Ω̄N ,

where v is the solution of regular component of the original problem and V is the solution of (23).

Proof. Consider the local truncation error

LN (V − v) = LNV − LNv = f − LNv

= Lv − LNv

By[21] we have

|LN (V − v)(xi)| ≤

C
√
εN−1, xi ∈ {σ, 1− σ},

CN−2, otherwise.

Therefore
|LN (V − v)(xi)| ≤ CN−2.

Further

LN1 (V − v)(xN ) = LN1 V (xN )− LN1 v(xN )

= B − LN1 v(xN )

= L1v(xN )− LN1 v(xN )

|LN1 (V − v)(xN )| ≤ Cε(h3
1v
′′(χ1) + · · ·+ h3

Nv
′′(χN ))

≤ CN−2

where xi−1 ≤ χi ≤ xi, 1 ≤ i ≤ N .
Applying lemma 4.2 we have |(V − v)(xi)| ≤ CN−2, for all xi ∈ Ω̄N .

Lemma 5.2. The error in the singular component of the numerical solution is
bounded as

|(W − w)(xi)| ≤ CN−2 ln2 N, for all xi ∈ Ω̄N

where w is the solution of (17) and W is the solution of (24).

Proof. The error can be written in the form
W − w = (WL − wL) + (WR − wR),

and the errors WL − wL and WR − wR are estimated separately.
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First the estimate for WL − wL is given. The argument depends on whether σ = 1
4

or σ = 2
√

ε
β

lnN < 1
4

Case(i): σ = 1
4

In this case the mesh is uniform and 2
√

ε
β

lnN ≥ 1
4
, it is clear that xi − xi−1 = N−1 and ε−

1
2 ≤ C lnN . By [21],

|LN (WL − wL)(xi)| ≤ C(N−1 lnN)2

and

LN1 (WL − wL)(xN ) = LN1 WL(xN )− LN1 wL(xN )

= B − LN1 wL(xN )

= L1wL(xN )− LN1 wL(xN )

|LN1 (WL − wL)(xN )| ≤ ε|C(h3
1w
′′(χ1) + · · ·+ h3

Nw
′′(χN ))|

≤ CN−2

where xi−1 ≤ χi ≤ xi. Applying lemma 4.2 to the function (WL − wL)(xi) gives

|(WL − wL)(xi)| ≤ C(N−1 lnN)2. (27)

Case(ii): σ < 1
4

The mesh is piecewise uniform, with the mesh spacing 2(1−2σ)/N in the subinterval [σ, 1−σ] and 4σ/N in each of the subintervals
[0, σ] and [1− σ, 1]. The argument depends on the mesh spacing. By [21],

|LN (WL − wL)(xi)| ≤ C(N−1 lnN)2 for all xi ∈ (0, 1)

and

|LN1 (WL − wL)(xN )| ≤ ε|C(h3
1w
′′(χ1) + · · ·+ h3

Nw
′′(χN ))|

≤ C(h3
1 + · · ·+ h3

N )

≤ CN−2

where xi−1 ≤ χi ≤ xi, an application of lemma 4.2 to the function (WL − wL)(xi) gives

|(WL − wL)(xi)| ≤ CN−2 ln2 N.

Analogous arguments are used to establish the error estimate for WR. This completes the proof.

The above error estimates for the individual components of the numerical solution now lead to the following theorem on the error
estimate for the numerical solution U , which is obtained by combining them using the triangle inequality.

Theorem 5.3. If u is the solution of (12)− (14) and U is the corresponding numerical solution of (18)− (20), then we have

‖U − u‖Ω̄N ≤ CN
−2 ln2 N.

Proof. Combining Lemma 5.1 and Lemma 5.2, the proof gets completed.

6. Numerical Results

Example 6.1.
−εu′′(x) + u(x) = 1, 0 < x < 1 (28)

with boundary conditions
u(0) = 0, (29)

u(1)− ε
1∫

0

x

2
u(x)dx = 0. (30)
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Table 1. Maximum pointwise errors and order of convergence for Example 6.1

Number of mesh points N
ε 64 128 256 512 1024 2048 4096
20 5.439e-06 1.360e-06 3.399e-07 8.499e-08 2.125e-08 5.312e-09 1.328e-09
2−2 2.153e-05 5.384e-06 1.346e-06 3.365e-07 8.412e-08 2.103e-08 5.259e-09
2−4 8.352e-05 2.088e-05 5.221e-06 1.305e-06 3.263e-07 8.159e-08 2.039e-08
2−6 2.425e-04 6.071e-05 1.518e-05 3.796e-06 9.490e-07 2.372e-07 5.931e-08
2−8 9.525e-04 2.391e-04 5.985e-05 1.496e-05 3.742e-06 9.355e-07 2.338e-07
2−10 3.747e-03 9.525e-04 2.391e-04 5.985e-05 1.496e-05 3.742e-06 9.355e-07
2−12 4.041e-03 1.391e-03 4.586e-04 1.454e-04 4.492e-05 1.359e-05 3.742e-06
2−14 4.041e-03 1.391e-03 4.586e-04 1.454e-04 4.492e-05 1.359e-05 4.045e-06
2−16 4.041e-03 1.391e-03 4.586e-04 1.454e-04 4.492e-05 1.359e-05 4.045e-06
2−18 4.041e-03 1.391e-03 4.586e-04 1.454e-04 4.492e-05 1.359e-05 4.045e-06
EN 4.041e-03 1.391e-03 4.586e-04 1.454e-04 4.492e-05 1.359e-05 4.045e-06
RN 1.538e+00 1.601e+00 1.656e+00 1.695e+00 1.724e+00 1.748e+00 -

Table 2. Maximum pointwise errors and order of convergence for Example 6.2

Number of mesh points N
ε 64 128 256 512 1024 2048 4096
20 5.177e-06 1.294e-06 3.236e-07 8.091e-08 2.022e-08 5.056e-09 1.264e-09
2−2 1.435e-05 3.590e-06 8.976e-07 2.244e-07 5.610e-08 1.402e-08 3.506e-09
2−4 4.568e-05 1.147e-05 2.870e-06 7.176e-07 1.794e-07 4.485e-08 1.121e-08
2−6 1.785e-04 4.504e-05 1.131e-05 2.829e-06 7.074e-07 1.768e-07 4.421e-08
2−8 1.822e-04 1.778e-04 4.488e-05 1.126e-05 2.818e-06 7.048e-07 1.762e-07
2−10 7.204e-04 3.138e-04 1.249e-04 4.940e-05 1.682e-05 5.612e-06 1.699e-06
2−12 7.192e-04 3.135e-04 1.247e-04 4.937e-05 1.681e-05 5.611e-06 1.761e-06
2−14 7.185e-04 3.133e-04 1.247e-04 4.935e-05 1.681e-05 5.610e-06 1.761e-06
2−16 7.182e-04 3.132e-04 1.246e-04 4.935e-05 1.681e-05 5.610e-06 1.761e-06
2−18 7.181e-04 3.132e-04 1.246e-04 4.934e-05 1.681e-05 5.609e-06 1.761e-06
DN 7.215e-04 3.141e-04 1.250e-04 4.940e-05 1.682e-05 5.612e-06 1.761e-06
PN 1.199e+00 1.329e+00 1.339e+00 1.554e+00 1.583e+00 1.671e+00 -

Its exact solution is given by

u =
(ε− 2ε2 − 4 + 4e

−1√
ε (1 + ε3/2

2
+ ε2

2
))e

x√
ε

4e
1√
ε (1− ε3/2

2
+ ε2

2
)− 4e

−1√
ε (1 + ε3/2

2
+ ε2

2
)

+

(2ε2 − ε+ 4− 4e
1√
ε (1− ε3/2

2
+ ε2

2
))e
−x√
ε

4e
1√
ε (1− ε3/2

2
+ ε2

2
)− 4e

−1√
ε (1 + ε3/2

2
+ ε2

2
)

+ 1.

Since the problem has an analytical solution, for every ε the maximum pointwise errors are estimated by
ENε = max

xi∈Ω̄
|u(xi)− UN (xi)| and EN = max

ε
ENε

where UN denotes the numerical solution. The order of convergence is obtained by

RNε = log2(
ENε
E2N
ε

) and RN = log2( E
N

E2N ).

Example 6.2.
−εu′′(x) + (5 + x)u(x) = 1, 0 < x < 1 (31)

with boundary conditions
u(0) = 0, (32)

u(1)− ε
1∫

0

x

2
u(x)dx = 0. (33)

The exact solution of the Example 6.2 is not known. Therefore, we use the double mesh principle to estimate the error and compute
the experiment rate of convergence to the computed solution. Define the double mesh difference to be

DN
ε = max

xi∈Ω̄N
|UN (xi)− Ū2N (xi)| and DN = max

ε
DN
ε

where Ū2N (xi) is the piecewise linear interpolant of the mesh function U2N (xi) onto [0,1]. From these quantities the order of
convergence is computed from

PNε = log2(
DNε
D2N
ε

) and PN = log2( D
N

D2N ).

Numer. Anal. Appl. Math., 2020, 1(1), 33-44. 40



Raja et al.,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

 

 

U, N=16

u

(a) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

 

 

U, N=32

u

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

 

 

U, N=64

u

(c)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

x

 

 

U, N=128

u

(d)

Fig. 1. Exact and approximate solutions of Example 6.1 for ε = 2−14.
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Fig. 2. The error in the numerical solution with respect to the exact solution of Example 6.1 for ε = 2−14.
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Fig. 4. Graph of the numerical solution of Example 6.2 for ε = 2−14.
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Fig. 5. Loglog plot of the maximum pointwise errors for Example 6.2
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7. Conclusion
We have solved the singularly perturbed boundary value problem (12)− (14) with integral boundary condition, using finite difference
method on Shishkin mesh. The method is shown to be of orderO(N−2 ln2 N), that is, the method has almost second order convergence
with respect to ε. Two examples are given to illustrate the numerical method. Our numerical results reflect the theoretical estimates.
Maximum pointwise errors and order of convergence of the Examples 6.1 and 6.2 are given in Table 1 and 2 respectively. Comparison
of exact and approximate solutions of Example 6.1 for ε = 2−14 with various N values are given in Figure 1. The error between exact
and numerical solutions of Example 6.1 for various values of N is given in Figure 2. Loglog plot of the maximum pointwise errors
of Example 6.1 is given in Figure 3. The numerical solution of Example 6.2 is plotted for ε = 2−14 and N = 128 in Figure 4. The
maximum pointwise errors for Example 6.2 through loglolg plot is presented in Figure 5.
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