

Supporting Information

Evaluation of the Physicochemical Characteristics and Adsorption Efficiency of Activated Carbons Derived from Banana Peels and Coconut Shell: A Comparative Study

Mohammed J.,*^a Isah Jibrin^a and Abdulhanan O.^b

^aDepartment of Chemistry, Faculty of Natural & Applied Sciences, Nasarawa State University, Keffi, Nigeria. ^bDepartment of Chemical Sciences, Faculty of Sciences, Federal University of Kashere, Gombe State.

*Corresponding Author Email Address: jibrilmohammed50@gmail.com (Mohammed J.)

Table Captions

Table. S1. Effect of Varying Initial Concentration of Safranin-O on Adsorption onto CSAC.
Table. S2. Effect of Varying Initial Concentrations of Safranin-O on Adsorption onto BPAC.
Table. S3. Effect of varying pH on the Adsorption of Safranin-O onto CSAC.
Table. S4. Effect of varying pH on the Adsorption of Safranin-O onto BPAC.
Table. S5. Effect of Varying Adsorbent Dosage on the Adsorption of Safranin-O onto CSAC.
Table 6. Effect of Varying Adsorbent Dosage on the Adsorption of Safranin-O onto BPAC.
Table 7. Effect of Varying Contact Time on the Adsorption of Safranin-O onto BPAC.

Tables 1-2 show the effect of varying pH on the adsorption of Safranin-O onto coconut shell activated carbon (CSAC) and banana peels activated carbon (BPAC).

Conc.(mg/L)	CO-Ce(mg/L)	Ce(mg/L)	Qe(mg/g)	% RE	SD
10	9.64	0.36	1.45	96.40	0.012
20	14.54	5.46	2.18	72.70	0.140
30	20.64	9.36	3.10	68.80	0.111
40	25.73	25.73	3.86	64.33	0.046
50	30.14	19.86	4.521	60.28	0.003

Table 1: Effect of Varying Initial Concentration of Safranin-O on Adsorption onto CSAC.

Data are presented as means of duplicate determinations and standard deviation (SD)

Table 2: Effect of Varying Initial Concentrations of Safranin-O on Adsorption onto BPAC.

Conc.(mg/L)	$C_0-C_e(mg/L)$	C _e (mg/L)	Q _e (mg/g)	% RE	SD
10	8.24	1.76	1.24	82.40	0.160
20	13.76	6.24	2.06	68.80	0.005
30	18.85	11.15	2.83	62.83	0.008
40	22.88	17.12	3.43	57.20	0.013
50	23.13	26.87	3.47	46.26	0.002

Tables 3-4 show the effect of varying pH on the adsorption of Safranin-O onto coconut shell activated carbon (CSAC) and banana peels activated carbon (BPAC).

рН	$C_0-C_e(mg/L)$	C _e (mg/L)	Q _e (mg/g)	% RE	SD
2	13.47	6.53	2.02	67.35	0.013
4	15.11	4.89	2.27	75.55	0.182
6	15.38	4.62	2.31	76.90	0.001
8	17.60	2.40	2.64	88.00	0.012
10	18.51	1.49	2.78	92.55	0.015

Table 3: Effect of varying pH on the Adsorption of Safranin-O onto CSAC.

Data are presented as means of duplicate determinations and standard deviation (SD)

Table 4.	Effect of	varving nH	on the Adsor	ntion of Safrar	in-O onto BPAC
	LITCET	varying pri	on the Ausor	phon of Sana	m-0 onto Di AC.

pН	$C_0-C_e(mg/L)$	C _e (mg/L)	Q _e (mg/g)	% RE	SD
2	16.73	3.27	2.51	83.65	0.170
4	15.17	4.83	2.28	75.85	0.015
6	14.14	5.86	2.12	70.70	0.012
8	11.72	8.28	1.76	58.60	0.001
10	10.49	9.51	1.57	52.40	0.100

Tables 5-6 show the effect of varying adsorbent dosage on the adsorption of Safranin-O onto coconut shell and banana activated carbons (ACs).

Dosage	$C_0-C_e(mg/L)$	C _e (mg/L)	Q _e (mg/g)	% RE	SD
0.2	14.53	5.47	2.18	67.35	0.110
0.4	17.17	2.83	1.29	85.85	0.120
0.6	18.64	1.36	0.93	93.20	0.118
0.8	19.01	0.99	0.71	95.05	0.006
1.0	19.01	0.99	0.71	95.05	0.019

Table 5: Effect of Varying Adsorbent Dosage on the Adsorption of Safranin-O onto CSAC.

Data are presented as means of duplicate determinations and standard deviation (SD)

Table 6: Effect of Varying Adsorbent Dosage on the Adsorption of Safranin-O onto BPAC.
--

Dosage	$C_0-C_e(mg/L)$	C _e (mg/L)	Q _e (mg/g)	% RE	SD
0.2	13.76	6.24	2.06	68.80	0.029
0.4	15.90	4.05	1.20	79.75	0.106
0.6	17.82	2.18	0.89	89.10	0.018
0.8	17.82	2.18	0.89	89.10	0.120
1.0	17.82	2.18	0.89	89.10	0.034

Tables 7-8 show the effect of varying contact time on the adsorption of Safranin-O onto coconut shell activated carbon (CSAC) and banana peels activated carbon (BPAC)

Time (mins)	$C_0-C_t(mg/L)$	C _t (mg/L)	Q _t (mg/g)	% RE	SD
20	11.99	8.01	1.80	59.95	0.014
40	13.75	6.25	2.06	68.75	0.012
60	17.83	2.17	2.67	89.15	0.013
80	18.14	1.86	2.72	90.70	0.124
100	18.14	1.86	2.72	90.70	0.011

Table 7: Effect of Varying Contact Time on the Adsorption of Safranin-O onto CSAC

Data are presented as means of duplicate determinations and standard deviation (SD)

Table 8: Effect of Varying Contact Time on the Adsorption of Safranin-O onto BPAC

Time (mins)	$C_0-C_t(mg/L)$	C _t (mg/L)	Q _t (mg/g)	% RE	SD
20	10.13	9.87	1.52	50.65	0.171
40	12.74	7.26	1.91	63.37	0.111
60	15.52	4.48	2.33	77.60	0.001
80	15.75	4.25	2.36	78.75	0.012
100	15.76	4.24	2.36	78.88	0.010