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ISSN: 2582-1598 Abstract: Thin layers of Cadmium Oxide with various volumes of Cadmium acetate solution (40, 50 and 70 ml) were 
deposited using spray pyrolysis technique over a glassy substrate. Samples were investigated using FESEM images, XRD 
and UV–Vis spectra as well as I–V characteristic. It was found that all samples were grew up with polycrystalline 
nanostructures along the preferred direction of (002). In addition, it was found that grew up sample in the volume of 
50 (ml) are of optimum photoconductivity condition in visible range regarding optimum structural (largest crystallite 
size and lowest crystallite defect density) and optical (smallest band gap and highest light absorption) conditions. 
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1. Introduction 

Cadmium Oxide (CdO) is one of the rare inherent semi–conductors of 

type P with a narrow band gap of about 1.2–2.1 (eV) which has a 

monoclinic structure with limited transparency in the region of 

visible light.
[1–11]

 Thin layers of this material are frequently dark 

brown to black. This darkness is due to narrow band gap and direct 

transitions between bands.
[12–20]

 This fact leads to high absorption of 

visible light and can be used in optical pieces such as solar cells. In 

addition, this material is considered due to abundance of raw 

material, non–toxicity, easy production and ability to change and 

optimizing its physical properties using various physical and chemical 

methods such as chemical vapor deposition,
[21–31]

 spray pyrolysis
[32–

43]
 and so on. This material is one of the important mineral Oxides for 

applying in pieces such as solar cells, electrochromic pieces and 

gaseous sensors due to its availability, high absorption rate and low 

cost.
[44–56]

 

In the current research, cost effective spray pyrolysis technique 

was used to investigate photoconductivity of CdO thin layers with 

various volumes of spray solution. 

Conventional electrical energy storage (EES) electrodes, such as 

rechargeable batteries, are mostly based on composites of 

monolithic micrometer sized particles bound together with polymeric 

and conductive carbon additives and binders.
[94–127]

 The kinetic 

limitations of these monolithic chunks of material are inherently 

linked to their electrical properties, the kinetics of ion insertion 

through their interface and ion migration in and through the 

composite phase.
[128–141]

 Redox chemistry of nanostructured 

materials in EES systems offer vast gains in power and energy. 

Furthermore, due to their thin nature, ion and electron transport is 

dramatically increased, especially when thin heterogeneous 

conducting layers are employed synergistically.
[142–156]

 However, 

since the stability of the electrode material is dictated by the nature 

of the electrochemical reaction and the accompanying volumetric 

and interfacial changes from the perspective of overall system 

lifetime, research with nanostructured materials has shown often 

indefinite conclusions: in some cases, an increase in unwanted side–

reactions due to the high surface area (bad). In other cases, results 

have shown significantly better handling of mechanical stress that 

results from lithiation/delithiation (good). Despite these mixed 

results, scientifically informed design of thin electrode materials, 

with carefully chosen architectures, is considered a promising route 

to address many limitations witnessed in EES systems by reducing 

and protecting electrodes from parasitic reactions, accommodating 

mechanical stress due to volumetric changes from electrochemical 

reactions, and optimizing charge carrier mobilities from both the 

“ionic” and “electronic” points of view. Furthermore, precise 

nanoscale control over the electrode structure can enable accurate 

measurement through advanced spectroscopy and microscopy 

techniques.
[157–160]
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This Account summarizes recent findings related to thin 

electrode materials synthesized by atomic layer deposition (ALD) and 

electrochemical deposition (ECD), including nanowires, nanotubes, 

and thin films. Throughout the Account, we will show how these 

techniques enabled us to synthesize electrodes of interest with 

precise control over the structure and composition of the material. 

We will illustrate and discuss how the electrochemical response of 

thin electrodes made by these techniques can facilitate new 

mechanisms for ion storage, mediate the interfacial electrochemical 

response of the electrode, and address issues related to electrode 

degradation over time. The effects of nanosizing materials and their 

electrochemical response will be mechanistically reviewed through 

two categories of ion storage: (1) pseudocapacitance and (2) ion 

insertion. Additionally, we will show how electrochemical processes 

that are more complicated because of accompanying volumetric 

changes and electrode degradation pathways can be mediated and 

controlled by application of thin functional materials on the 

electrochemically active interface; examples include conversion 

electrodes, reactive lithium metal anodes, and complex reactions in a 

Li/O2 cathode system. The goal of this Account is to illustrate how 

careful design of thin materials either as active electrodes or as 

mediating layers can facilitate desirable interfacial electrochemical 

activity and resolve or shed light on mechanistic limitations of 

electrochemical processes related to micrometer size particles 

currently used in energy storage electrodes. 

Three–dimensional (3D) nanostructures are emerging as 

promising building blocks for a large spectrum of applications. One 

critical issue in integration regards mastering the thin, flat, and 

chemically stable insulating layer that must be implemented on the 

nanostructure network in order to build striking nano–architectures. 

In this letter, we report an innovative method for nanoscale 

planarization on 3D nanostructures by using hydrogen silesquioxane 

as a spin–on–glass (SOG) dielectric material. To decouple the 

thickness of the final layer from the height of the nanostructure, we 

propose to embed the nanowire network in the insulator layer by 

exploiting the planarizing properties of the SOG approach. To achieve 

the desired dielectric thickness, the structure is chemically etched 

back with a highly diluted solution to control the etch rate precisely. 

The roughness of the top surface was less than 2 nm. There were no 

surface defects and the planarity was excellent, even in the vicinity of 

the nanowires. This newly developed process was used to realize a 

multilevel stack architecture with sub–deca–nanometer–range layer 

thickness. 

 

2. Sample Preparation 

To prepare thin layers of Cadmium Oxide, Cadmium acetate powder 

was solved in deionized water and 0.15 (M) Cadmium acetate 

solution was prepared. Then, this solution was sprayed over glassy 

substrate in various volumes (40, 50, 70 ml) – corresponding to 

samples of V1, V2, V3 – to prepare the considered layers. It is 

expected that in pyrolysis process, the following chemical reaction 

mechanism happens:
[57–63]

 

 

             Cd(CH2COO)2.H2O+H2O   CdO+2CH3COOH+H2O 

 

During each step, cleaned substrates were heated up to 440º C in 

spray device and then, solution was sprayed under air pressure (1.1 

bar). In this process, distance of sprays from substrates was 35 (cm). 

Structural analysis of samples was performed by X–Ray Diffraction 

device (XRD, Brucker AXS) with CuKα spectral line emission (1.5405 

Å) and the surface morphology of samples were investigated by 

Scanning Electron Microscopy (FESEM Hitachi S.4160). Optical 

characteristics of layers were measured using passed and absorbed 

spectra by optical spectroscopy (Shimadzu UV–Vis 1800) in the range 

of 300–1100 (nm). 

 

3. Surface Morphology 

Fig. 1 shows SEM images of samples in the scales of 5 microns and 

500 (nm). Although the images for V1 and V3 samples show uniform 

surface along with some grains with 50 and 100 (nm), respectively, 

V2 sample is of porous surface along with woven fibers and mud–like 

particles that differentiate it from two other sample. 

 

4. Structural Properties 

XRD spectrum of samples is shown in Fig. 2. Diffraction curves of 

samples indicate that they are of polycrystalline structure with 

monoclinic structure and principal planes of (002) and (111) located 

at angles of 35.56° and 38.74°. The results indicate that V2 sample 

with solution volume of 50 (ml) is of weaker peaks at directions of 

(202) and (020) at angles of 48.86° and 53.85°, respectively. The 

presence of these peaks along with relative intensity of the major 

peaks indicates that crystalline structure improves compared to 

other samples. 

 

 
Fig. 1. SEM images of thin layers of Cadmium Oxide for samples 

prepared in various volumes. 
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For more accurate investigation of structural properties, 

crystallite size (D), dislocation density (δ) and crystalline strains (ε) 

 are calculated:
[64–76]

 

                                                                                                                             

0.9 / cosD                                                                                 (1) 

                                                                                                                                           
21/ D                                                                                                   (2) 

                                                                                                                                                   

/ sin / tanD                                                                      (3) 

 

where, β is half width at full maximum, D is crystallite size, θ is 

Brug angle and λ is X–Ray wavelength. Results of these calculations 

are listed in Table (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Optical Properties 

Fig. 3 shows optical passing spectrum of the under studied layers. It 

can be seen that in visible region of 400–700 (nm), V2 sample and V3 

sample are of the lowest and highest passing, respectively. These 

variations may be largely due to relative electrical conductivity of 

layers (Section 4) which is effective is relative amount of metal–like 

and or insulator–like of layers. 

According to the reported results, CdO layers are acted as a 

semiconductor with direct transition between bands so that during 

these transitions, absorption coefficient is a function of incident 

photon energy.
[77–93]

 Fig. 4 shows the variations of absorption spectra 

of layers against wavelength. 

Since Cadmium Oxide is a semiconductor with direct transitions 

between bands, to determine optical band gap of samples, (ahν)
2
 is 

drawn against hν and data is extrapolated in linear region of high 

energy with horizontal axis as a=0. Fig. 5 shows this curve in order to 

determine direct optical band gap and the attached figure shows the 

results obtained from this analysis related to band gap amounts. The 

results indicate that the sample with largest crystallite size (V2) has 

the smallest band gap (1.74 eV) and the sample with smallest 

crystallite size (V3) has the largest band gap (2.01 eV) which can be a 

reason for happening a quantum limitation in these samples. 

Because of their spontaneous nanostructure thin films behave 

differently from bulk materials of equivalent chemical composition. 

Depending both on material and deposition technique, optical thin 

films present structures, which when observed with an electronic 

microscope, may appear as columnar, polycrystalline, amorphous or 

lacunar. However, as these structures are in a nanometric scale they  

 
Fig. 2. XRD spectrum of Cadmium Oxide layers with various volumes (a: 

V1; b: V2; c: V3) of solution. 

Table 1. Calculated structural properties for the preferred peak (002). 

Sample D (nm)  2 210 nm     310   

V1 17.77 0.525 3.37 
V2 27.23 0.333 3.56 
V3 16.96 0.673 4.63 

 

 
Fig. 3. Passing optical spectrum of Cadmium Oxide thin layers grew up in 

various volumes (V1: green spectrum; V2: blue spectrum; V3: red 

spectrum). 

 
Fig. 4. Absorption spectrum of under studied samples in terms of 

wavelength (V1: green spectrum; V2: blue spectrum; V3: red spectrum). 
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do not scatter light whereas they change the mean refractive index 

of the material. The lacunar structure also leads to water adsorption 

which induces shifts in the spectral properties of multilayer filters. A 

review of the work in this field is presented. Thanks to the progress 

in photolithography techniques, materials can now be artificially 

nano structured, and the mean refractive index can be controlled in 

this way. Thin films nano–structured in one dimension are 

anisotropic. A comparison between measured anisotropy and 

calculated anisotropy using homogenization models is given. Ion 

implantation is also shown to be a useful means of locally changing 

the refractive index and to control the mean refractive index. 

Calculation of polarizing multilayer filters made with such anisotropic 

layers is presented. 

 

6. Electrical Properties 

Fig. 6 shows current–voltage curve of these samples. The results 

indicate that sample V2 has the highest electrical conductivity 

(metal–like property) while sample V3 has the lowest one (isolator–

like property). This is in good agreement with optical transition 

behavior of layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Photoconductivity Properties 

To investigate photoconductivity of samples, the under studied 

samples were placed under visible light emission (halogen lamp). Fig. 

7 shows current–voltage curve of samples under light. As can be 

observed, all three samples are reacted to the light and after 

emission, more electrical current passed through samples. This is an 

expected event due to producing electron – hole pairs in layers as a 

result of optical photon emission in hν>Eg. In order to compare 

optical sensitivity of these samples, the passed electrical current 

through samples in voltage of V3 in darkness and under visible light 

emission is shown in Fig. 8. As can be seen, sample V2 is of highest 

relative change of electrical current (ILight/IDark = 11) and sample V3 is 

of lowest one (=3). These variations may be due to the effect of 

various factors such as optical absorption, band gap, crystallite size 

and crystalline obliquity in the investigated layer. 

Photoconductivity is the incremental change in the electrical 

conductivity of a semiconductor or insulator upon illumination. The 

behavior of photoconductivity with photon energy, light intensity 

and temperature, and its time evolution and frequency dependence, 

can reveal a great deal about carrier generation, transport and 

 
Fig. 5. Analysis of optical data as a function of photon energy. The 

attached figure shows band gap of layers. 

 
Fig. 6. Current–Voltage curve for samples grew up in darkness (V1: blue 

curve; V2: red curve; V3: purple curve). 

 
Fig. 7. Current–Voltage curve for samples subjected to visible light (V1: 

blue curve; V2: red curve; V3: purple curve; calibrated curve: green 

curve). 

 
Fig. 8. Passed electrical current through investigated samples. 
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recombination processes. Many of these processes now have a 

sound theoretical basis and so it is possible, with due caution, to use 

photoconductivity as a diagnostic tool in the study of new electronic 

materials and devices. This chapter describes the main steady–state 

and transient photoconductivity techniques applied in the 

investigation of semiconductors whose performance is limited by the 

presence of localized electronic states. These materials tend to be 

disordered, and possess low carrier mobilities and short free–carrier 

lifetimes in comparison with crystalline silicon. They are often 

prepared as thin films, and are of interest for large–area applications, 

for example in solar cells, display backplane transistors, 

photoemissive devices such as organic light–emitting diodes (OLEDs) 

and medical imagers. However, examples of where these techniques 

have been useful in the study of defective crystalline semiconductors 

are also given. The approach followed here is by way of an 

introduction to the techniques, the physics supporting them, and 

their applications, it being understood that readers requiring more 

detailed information will consult the references provided. 

 

8. Conclusions 

The thin layers of Cadmium Oxide nanostructures were deposited 

using spray pyrolysis technique with various volumes of spray 

solution over a glassy substrate. FESEM images indicate that surface 

morphology of samples are dependent on the variations of solution 

volume and XRD spectrum of layers indicate that polycrystalline 

structures are grew up in preferred direction of (002). Data analysis 

indicates that at solution volume of 50 ml, crystallite size and 

crystallite defect densities are optimum and photoconductivity 

properties are improved. In visible light region, layers are of low 

optical transition and of optical band gap between 1.74–2.01 (eV) so 

that sample V2 has the lowest band gap among all samples. The 

obtained results indicate that band gap variations in these samples 

are controlled by crystallite size and under the effect of happening a 

quantum limitation. Photoconductivity results indicate that sample 

V2 is of highest optical sensitivity to visible light. 
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