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1. Introduction 

In mathematical finance generally, the application of Partial 

Differential Equation (PDE) cannot be over-emphasized due to its 

numerous uses in the society. For instance, Partial Differential 

Equations (PDEs) are used in modeling to analyze some dynamic 

systems in the areas such as physics, biology, and economics and 

finance etc. the Linear PDEs make up a large class of PDEs which is of 

a succinctly simple structure such that a thorough analysis is 

possible.
[1]

 Hence, the dynamics of changing process can be modeled 

into ordinary differential equation or partial differential equation, 

depending on the nature of the problems, these equations may take 

various forms like ordinary differential equations, where partial 

differential equation (PDE) is an equation involving a function of 

several variables and at least, one of its partial derivatives and 

sometimes a combination of interacting equations of ordinary and 

partial differential equation. If some randomness is allowed into 

stochastic differential equation (SDE) for example; environmental 

effects are allowed into some of the coefficients of a differential 

equation, a more realistic mathematical model of the problem or 

situation can be obtained.
[2]

 

However, mathematicians are given all serious attention to 

solution which has topological and analytical basis; such solutions 

exist and are not difficult to obtain. Hence, a sobolev space belongs 

to these families with redefinition of differentiability; and gives weak 

formulations to obtain weak solutions. 

Nevertheless, good numbers of scholars have used PDEs in 

different approaches such as; 

Mohammed E.R. et al.,
[3]

 considered systems of nonlinear PDEs 

using Adomian and modified decomposition method. In another 

dimension Nwobi F.N.
[4]

 studied the symmetry analysis of partial 

differential equation of hyperbolic type and result show the lie 

algebra is of *  (   )   +      with 12 optimal systems. 

Company R. et al.,
[5]

 employed the semi-discretization technique to 

deal with the issues arising as a result of a nonlinear case of interest 

modeling option pricing with transaction costs. Rao S.C.S.
[6]

 also 

applied numerical scheme to the generalized Black-Scholes partial 

differential equation for European call option. The outcome showed 

that the second order accuracy in time and third order accuracy in 

space were obtained. 

Denny D.
[7]

 studied the existences of unique solution of an elliptic 

PDE. Result showed that the key proofs lies in obtaining a priori 

estimates. Panda A. et al.,
[8]

 considered the existence of solution for 

a PDE involving a singularity with a general non negative radon 

measure as its nonhomogeneous terms. Canino A. et al.,
[9]

 have 

considered quasilinear elliptic equation involving the p-laplacian and 

singular nonlinearities; they deduced a few comparison principles 

and have proved some unique results. In another dimension, DiPerna 

R.J. et al.,
[10]

 obtained some new existence, uniqueness and stability 
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results for ODEs with coefficients Sobolev spaces. In their results 

linear transport equations were analyzed by the method of 

renormalization solutions.  

Osu B.O et al.,
[11]

 Looked at solution to nonlinear Black Scholes 

equations. They proved the existence of weak solutions in a bounded 

domain and extend the results to the whole domain using a diagonal 

process. Osu B.O et al.,
[12]

 Considered a weak solution of nonlinear 

Black Scholes Equation with transaction cost and portfolio risk in 

Sobolev space. In their result they obtained a weak solution that is 

characterized by Fourier transform. A few noteworthy papers on 

different PDEs can be found in references therein.
[12-18]

 

This study is aimed at solving financial partial differential 

equation of hyperbolic type in Sobolev spaces on the basis of 

obtaining existence and uniqueness of weak solutions which have 

not been seen in this dynamic area of mathematical finance. This 

paper extends the work of Osu B.O et al.,
[12]

 by considering stochastic 

hyperbolic PDE in such spaces. 

The paper is arranged in the following ways: Section 2 

mathematical frame work, Section 2.2 presents problem formulation, 

the definition, main results of Sobolev spaces are seen in 2.3. This 

paper is concluded in section 3. 

 

2. Mathematical Frame work 

2.1. Stochastic Processes 

Definition 1 Stochastic process: A stochastic process  ( ) is a 

relation of random variables *  ( )        +, i.e, for each   in the 

index set    ( ) is a random variable. Now we understand as time   

and call  ( ) the state of the procedure at time  . In view of the fact 

that a stochastic process is a relation of random variables, its 

requirement is similar to that for random vectors. 

It can also be seen as a statistical event that evolves time in 

accordance to probabilistic laws. Mathematically, a stochastic 

process may be defined as a collection of random variables which are 

ordered in time and defines at a set of time points which may be 

continuous or discrete. 

 

Definition 2: A stochastic process whose finite dimensional 

probability distributions are all Gaussian.(Normal distribution). Let 

 

 (     )       , (     )          ⁄ -,       (    ) (1.1) 

 

Where     represents the function space of twice continuously 

differentiable functions with compact support, it     (    )  

{     (    )             (   )    } 

Assuming that     ,    - is the correlation coefficient     

between the processes     and    , then the value  ( , , ) of the 

asset discounted at the rate r satisfies the partial differential 

equations as follows.
[18]
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 (     )   (   )                                                                                 (1.3) 

In mathematical finance, for a contingent claim on a single asset, 

the generic PDE in the form.
[14]
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     (   )
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Where   represents time to maturity, x represents the value of 

the underlying asset or some monotonic functions of it (e.g. log (S); 

log-spot) ad u is the value of the claim (as a function of x and t). The 

terms a(.), b(.) adc(.) and diffusion, convection and reaction 

Coefficients respectively .(1.4) can also be written as; 

 
  

  
  (   ) . (   )

 

  
/   (   )

 

  
( (   ) )   (   )          (1.5) 

 

This PDE describes the evolution of the transition density of a 

stochastically quantity (e.g. a stock value) which occur in the 

Fokkper-Planoke (Kolmogrorov forward) equation. However our 

interest in this paper is the hyperbolic financial PDE that satisfies the 

following: 

 
   

   
 

 

 
  

   

   
  ,    -

  

  
                                                (1.6) 

 

2.2. Problem Formulation 

Given:       (   )           and      is an open 

bounded set. Following the initial /boundary-value problem 

 

{

             

          ,   -

                *   +
                                                        (1.7) 

 

Where      ⟶ ,  ,  : →           ,   𝑑  :  →     the 

unknown   (   ). 

The symbol   denotes for each time   a second – order partial 

differential operator, having either the divergence form. 
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or else the non-divergence form 
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For given coefficient.
 

 
   /

  
,  (    )

 ,  (         ) 

Definition: The partial differential operator 
  

      is said to be 

hyperbolic, if there exists   constant     such that 

∑ (
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 .
 

 
   /

  
    ,  (    )

         then      and     

wave equation. 

 

2.3. Main Results of Sobolev spaces 

Assuming   has     divergence form (1.8) and look for an appropriate 

notion of weak solution for problem (1.7).  

Suppose, initially that we have 

 

(
 

 
   )

  

  (    )
      (  )  (         )                        (    ) 

 

    (  )                                                                                            (1.12) 

 

    
 ( )     ( )                                                                        (1.13)                                                                    

 

And always assume .
 

 
     /

  
 .

 

 
   /

  
(         ) 

 

We introduce bilinear form of time-dependent 

 (     )   ∫ ∑(   )  

 

     

       ∫ ∑ (
 

 
   )

  

(   ) (   ) 

 

     

 (   ) 

 ∑ (    )
 

 

   

(   ) (   )      (   )  𝑑(   ) 

                                                                                                                   (1.14)                                                                    
          

 ( ) and      . 

 

Definition of weak solution: Suppose    (   ) to be a smooth 

solution of (1) and we defined the associated mapping as follows: 

   ,   -      
 ( ) 

By  

, ( )-( )   (   )(         ) 

Similarly, we introduce the function 

   ,   -     ( ) 

Defined by 

, ( )-( )   (   ) (         ), multiply the PDE 

         

By   and integrate by parts, to obtain the identity below 

 

(      )   ,     -  (   )                                                          (1.15) 

 

For      ,       (,)   𝑝                  𝑝  𝑑         ( ). 

We have seen from the PDE          such that 

          ∑ (   ) 
 

 

   

                                                                   (    ) 

         ∑ (    )
 

 

   

 (   )       𝑑     

∑(
 

 
   )

   

   

 (   )  

(  = 𝐼, … ,  ). This implies looking for a weak solution        

       ( ) for  .  .          ,   𝑑    reinterpret the first term 

of (1.15) as (     ), (𝐼)   presenting as usual the pairing 

between   
 ( ), is said to be weak solution of the hyperbolic 

initial/boundary – value problem  

(i) for the fact that (i) (    )   ,     -  (   ) 

For each     
 ( ) and a.e. time      , and  

(ii)  ( )      ( )    

 

Existence of weak solutions (Galerkin approximation), we shall 

construct weak solution of the hyperbolic initial/boundary-value 

problem. 

 

{

              

          ,   -

              *   +
 

 

In solving first, a finite dimensional approximate. We adopt the 

method of Galerkin’s in selecting smooth functions      ( ) (17) 

(     ) such that 

 

*  +   
  is an orthonormal basis of   

 ( )                                     (1.18) 

*  +   
  is an orthonormal basis of   ( )                                      (1.19) 

 

Fixing a position integer M, we write 

  ( )   ∑ 𝑑 
 ( )  

 

   

                                                                        (    ) 

 
Where we select the coefficient 𝑑 

 ( )(        𝐼    ) 

 

To satisfy 𝑑 
 ( )  (     )(  𝐼    )                                      (1.21) 

 

𝑑 
 ( )  (    )(  𝐼    )                                                         (1.22)               

 

And 

(  
    )   ,       -  (    )(        𝐼    )    (1.23) 

 

Theorem 1 (construction of approximate solutions). For each 

interior        ,      exists a unique function       the form 

(1.19) satisfying (1.20) (1.23). 

Proof suppose    to the given by (1.19), we notice using (1.18). 

 

  
 ( )   𝑑 

 ( )                                                                              (1.24) 

 

We have 

 ,       -  ∑   

 

   

( )𝑑 
 ( ) 

For    ( )   ,       -(       ), we also write   ( )  

( ( )   )(       ). Consequently (16) becomes the linear 

system of ODE 

 

𝑑 
   

( )  ∑   

 

   

( )𝑑 
 ( )    ( ) 

(             )  

 

With the following initial condition (14), (15). According to `standard 

theory for ODEs, there exists a unique            𝑑 ( )  

(𝑑 
 ( )    𝑑 

 ( )             (1.20), (1.21) and solving (18) for 

         . 
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2.4. Energy Estimates 

Here, we plan to send     and needs some estimates uniform in 

 . 

Theorem 2 (Energy estimates). There exists a constant  , depending 

only on     and coefficients of  , such that 

 

    (||  ( )||  
 ( )  ||  

 ( )||  ( ) ||  
  ||  *       ( ) 

  (     (       ( ))       
 ( )       ( ))                 (1.26) 

 

For m = 1, 2 

Proof 

Multiply equality (16) by 𝑑 
 ( )       𝐼       𝑑 recall (13) to 

discover the following 

 

(  
     

 )   ,     
  
   -  (    

 )                                              (1.27) 

 

For a. e.      . Notice that (  
  ,   
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     ( )) 

Then write as follows: 

 [     
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(         ) 
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For the symmetric bilinear form 
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The equality (1.29) implies 

   
𝑑

𝑑 
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 ,       -   (     

  
 ( )) 

|  |   (     
  

 ( )  ||  
 ||   ( ) 

Combining the estimates (1.27) – (1.31) gives 

 
 

  
.||  

𝐼 |   |   ( )/   ,       -   (   
𝐼 |    |   ( )  

 ,       -  || ||   ( )                                                 (25) 

 

Where we used the inequality 

 

 ∫|  | 𝑑(   )
 

  ,     ) (    
 ( )                                      (    ) 

 

Which follows from the uniform hyperbolicity condition. 

We write 

 

 ( )     
 ( )    ( )   [  ( )   ( )   ]                                  (    ) 

 

And 

 

 ( )  || ( )    ( )                                                                             (1.35) 

 

Then inequality (1.32) 

  ( )     ( )     ( ) 

          and appropriate constant,   ,   , 

The grownwall’s inequality yield the following estimate 

 

  ( )        ( )    ∫ ( ( )𝑑 )
 

 
(      )                            (1.36) 

 

Moreso,  ( )     
 ( )    ( )   ,  ( )   ( )  - 

   (      ( )        
 ( ) ) 

 

Following (1.20) and (1.21) we have the estimate 

 

   ( )   
 ( )       

 ( ). Thus formula (1.34) – (1.36) 

 

Provided the bound 

   
 ( )    ( )   ,  ( )   ( )   - 

  (      
 ( )        ( )        (       ( )) 

 

Since       was arbitrary, we see from this estimate and (1.33) 

that 

 

   
     

(   ( )    
 ( )     

 ( )    ( )) 

 

 (      
 ( )        ( )        (     

 ( )) 

 

⟹ For any     
 ( )      

 ( )   , and write         

 

Where     span *  +   
  and (     )    (       )  

Note      
 ( )   . Then (1.19) and (1.23) imply 

 

   
     (  

   )  (  
     )  (    )   ,       -  

 
Thus 

|   
    |   (     ( )        

 ( )) 

 
Since ‖     

 ( )   . Consequently 

 

∫  
 

 

  
      ( )𝑑   ∫       ( )  

 

 

       
 ( )𝑑  

 

  (      
 ( )        ( )(       ( )) 

 
2.5. Existence and uniqueness 

We pass limits in our Galerkin appropriations 

Theorem (Existence of weak solution). There exists a weak solution 

of (1.7). 
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Proof: From (1.26) of energy estimates, we see that the sequence 

*  +     
     is bounded in   (       

 ( ) *  
 +   

   is bounded in 

  (       ( ) and *  
 +   

    is bounded in   (        ( ) . 

As a consequence there exists a subsequence *  +   
    

*  +   
    𝑑     (       

 ( ), with     

  (      ( ))            ( ) 

Such that 

 

  {

                  (      ( ))

   
                 (      ( ))

   
                   (       ( ))

                                     (1.37) 

 

Next fix an interior N and choose a function     (,   -    
  ( ) of 

the form 

 

 (  ∑ 𝑑    

 

   

)                                                                             (    ) 

 

Where *𝑑 +   
  and smooth function. We select    , multiply 

(1.23) by 𝑑 ( ), sum         and the integrate with respect to  , 

to discover. 

∫    
     

 

 

  ,      -𝑑  ∫ (   )𝑑 
 

 

 

We set      and recall (1.37), to find in it unit that 

 

∫    
     

 

 

  ,     -𝑑  ∫ (   )𝑑 
 

 

                                          (    ) 

 

We set      and recall (1.37), to find in the limit that 

 

∫    
     

 

 

  ,     -𝑑  ∫ (   )𝑑 
 

 

                                           (    ) 

 

This equality then holds for all functions     (       
 ( ), since 

functions of the form (1.38) are dense in this space. From (1.40) it 

follows further that 

         ,     -  (   ) 

For all     
 ( )   𝑑  . .      . Furthermore,    (,   -   ( )) 

  𝑑    (,   -     ( )) 

We verify 

 

 ( )                                                                      (1.41) 
  ( )                                                                     (1.42) 

 

We choose any function say     (,   -    
 ( )), with  ( )  

  ( )     . Then integrating by parts twice w.r.t. t in (33) gives; 

 

∫ (     )   ,     -𝑑 
 

 

 ∫ (   )𝑑 
 

 

 ( ( )   ( ))     ( )  ( )  

Similarly from (32) we deduce 

 

∫ (      )   ,      -𝑑  ∫ (   )𝑑 
 

 

 

 

                                   (    ) 

 (  ( )   ( )    (  
 ( )  ( )) 

Setting      and recall (14), (15) and (30) to deduce 

 

∫ (     )   ,     -𝑑  ∫ (   )𝑑 
 

 

 

 

 .    ( )  (   ( ))/  (    ) 

 

Comparing identities (1.43) and (1.44). We can conclude that (1.41), 

(1.42), since  ( )   ( ) and arbitrary. Hence   is a weak solution of 

(1.7). 

 

Theorem 4 (uniqueness of weak solution). A weak situation of 1 

unique Proof. 

It is enough to show that the only weak solution of (1) with 
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To verify this, fix       and set 
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∫  ( )𝑑 
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 ( ) for each         𝑑    
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Since   ( )   ( )   . We obtain after integrating by parts in the 

first form above. 
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 , ( )  ( )  -   ∫  ,     -   ,     -

 

 

𝑑   

And consequently 
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We write: 
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  ( )    ( )     ( )    
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 ( )    ( )    ( )𝑑 

   ( )    ( ))                                                                                   (    ) 

 

But   ( )   ( )    
 ( )     ( )    

 ( )     ( )    
 ( ) 

and   ( )   ( )  ∫   ( ) 
 

 
  ( )𝑑  

 

(1.48) implies 

  ( )    ( )  (      )  ( )    
 ( )    ∫        

 ( )
 

 

  

      ( )𝑑  

We choose    so small that 

        
 

 
 

Then if        we have 

  ( )    ( )    ( )    
   ∫       ( )

 

 

       
 ( )𝑑  

 

The integral form of grownwall’s inequality, implies     on ,   -. 
We apply the same argument on the intervals ,          - etc 
eventually to deduce (1.45). 
 

2.6. Regularity 

In order to study the smoothness of our weak solution we will be 

motivated on the formal derivation of estimates.  

(i) Suppose for the moment   (   ) is a smooth solution of this 

initial – value problem for the wave equation: 

               (   ) 

               *   + 

And assume also u goes to zero as       sufficiently rapidly to 

justify the following calculation. We have 

𝑑

𝑑 
.∫

          
 𝑑(   )/   

 ∫            𝑑(   ) 

  ∫
     (     )𝑑(   )   ∫

      𝑑(   ) 

 ∫    
 𝑑(   )  ∫    𝑑(   ) 

Applying Gronwall’s inequality, we deduce 

   
     

∫
          

 𝑑(   )   ∫ ∫
    

 

 

 

𝑑 𝑑  ∫  |  |    𝑑(   )                                                        (1.49) 

 

With the constant C depending only on T. 

 

ii) We differentiate the PDE w.r.t and set       . Then 

{
 ̅     ̅           (   ) 

 ̅      ̅   ̅       *   +
 

                 ̅       (   )     (   )    .  𝑝𝑝               

(1.49)   ,    𝑑        

 

   
     

∫  |   |
     

 𝑑(   ) 

  (∫ ∫
    

 
 

 

𝑑(   )  ∫
  |   |  |  | ) 

  (   ) 𝑑(   )                                                                                   (1.51) 

 

          (   )   (  )   .     (   (   ))  

     
 (   (   ))/                                                                         (1.52) 

 

According to theorem 2, 

Writing           

Deduce that 

.∫  |   | 𝑑(   )/   ∫    
     𝑑(   ) 

 

For each       

Combining (1.51) – (1.53) we can conclude that 

   
     

|   |  |   |
     

 𝑑(   ) 

  (∫ ∫    
 

 

 

   𝑑 𝑑  ∫  |   |  |  | 𝑑 ) 

 

The constant C depending only on T. 

This estimates supports that bounds similar to (1.49) and (1.54) 

should be valid for our weak solution of a stochastic 2
nd

 order 

hyperbolic PDE. 

We calculate using the Galerkin approximation. To simplify the 

presentation, we however assume that *  +   
  is the complete 

collection of open functions for −Δ on   
 ( ), and also that   is 

bounded open with    smooth. In addition, Suppose 

The coefficients .
 

 
   /

  
  (      )

   (         ) are smooth 

 ̅ and to not depend on t. 

 

3. Conclusions 

The analysis of stochastic hyperbolic PDE in Sobolev spaces has been 

perfectly demonstrated; showing the existence, uniqueness and 

smoothness of weak solution and other estimates that follow 

uniform hyperbolicity condition of the problem. Hence, the result of 

energy estimates revealed that sequences exists and is well bounded 

in the space. Finally we shall be looking at the financial implications 

of these PDEs in the next study. 
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