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1. Introduction 

The above-ground part of plants i.e. leaves, stems, buds, flowers and 

fruits provide a habitat to microbial life. This habitat is called as 

phyllosphere.
[1]

 Although archaea, filamentous fungi and yeasts are 

present in phyllosphere but Bacteria are considered as the most 

dominant and important microbial inhabitants of the phyllosphere.
[2]

 

These microbes are epiphytes i.e. found on the plant surface as well 

as endophytes i.e. found within plant tissues. In case of rhizospheric 

zone, the microbes play an important role in regulating soil organic 

matter decomposition and nutrient cycling. The rhizospheric zone is a 

major gateways for nutrients and water.
[3]

 The rhizospheric 

microorganisms produce vitamins, plant hormones, antibiotics and 

other communication molecules that enhance the plant growth and 

alleviate abiotic stresses over the plant.
[4]

 Moreover, for proper soil 

management these are very important.
[5]

 Other than Rhizosphere, 

The phyllosphere also represents a niche with great environmental 

and agricultural significance. Soil microbes are a dynamic component 

of soil and performed many beneficial functions in the soil system.
[6]

 

There are great evidences for interactions of phyllosphere microbial 

inhabitants that affect the fitness of natural populations of plant and 

also improve the quality and productivity of agricultural crops. 

Phyllospheric bacteria have ability to promote the growth of plant. 

These bacteria can suppress and stimulate the colonization and 

infection of tissues by plant pathogens. Similarly, phyllospheric 

fungal that are endophytes of leaves can deter herbivores, protect 

the plant against various pathogens and also make the plant tolerant 

against the abiotic stress i.e. drought.  

There are the great evidence for vital roles within the 

phyllosphere microbial community which have given it the global 

significance.
[7]

 The best example of significance of phyllospheric 

microbial communities is nitrogen fixation. The estimated rates of 

bacterial nitrogen fixation in the phyllosphere can vary. The 

measured rate of nitrogen fixation in the phyllosphere of trees in 

some tropical habitats is over 60 kg N ha
-1

.
[8]

 The amounts of fixed 

nitrogen is considerably lower in the phyllosphere of temperate trees 

as compared to the tropical habitat. The process of nitrogen fixation 

through bacteria has been reported in phyllosphere of many crop 

plants.
[9]

 Other than nitrogen fixation, Methanol degradation and 

nitrification are the other environmentally important microbial 

processes in the phyllosphere. However, the rate of these processes 

in the phyllosphere remains to be demystified. Mostly culture-

dependant methods are used to judge the knowledge of the 

structure and activities of phyllosphere microbial communities. 

Information and data obtained from these culture-dependant 

methods relate only to culturable members of the phyllosphere 

community.
[10]

 It doesn't provide any information about the 

unculturabled vast majority of microbes present in samples. The new 
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insights into the complexity of phyllosphere microbial communities 

are provided by the recent application of culture-independent 

method based on characterizations of small subunit rRNA gene 

sequence for microbial community analysis.
[11]

 

Recent use of culture-independent method has changed our 

understanding of the structure and diversity of phyllosphere 

microbial communities. A variety of factors including plant, microbial 

and other environmental factors control the establishment of 

microbial communities in the phyllosphere.
[12]

 The role of plants 

genotypes played in selecting phyllosphere microbial communities 

has been recognized. On the basis of plant genotype, the evidence 

for the different factors that regulate the structure of phyllosphere 

communities has been evaluated.
[13]

 

 

2. Phyllosphere Microbial Life: The Diversity 

Microbial communities residing in close contact with plants are 

found in the rhizosphere and phyllosphere. In case of phyllosphere 

some microbial communities are residing as epiphytes on the surface 

and some are inside plants as endophytes.
[14]

 The diverse microbial 

communities are present in phyllosphere that are supporting 

numerous genera of bacteria, yeasts, filamentous fungi, algae and in 

some cases nematodes and protozoans are also present.
[15]

 From 

phyllosphere microbial communities, Bacteria are the most diversed 

and numerous microbes present in leaves with culturable counts of 

rang between 102 to 1012 cells per gram of leaf. The Culture-based 

studies demonstrated more than 78 bacterial species of 37 known 

bacterial genera in sugar beet and 88 bacterial species representing 

37 known bacterial genera in wheat over the whole of the growing 

season.
[16]

 Many of recent studies have revealed that the profiling of 

phyllosphere microbial communities based on culture-dependent 

methods is likely to be inaccurate and to underestimate diversity. In 

the case of the phyllosphere, use of culture-independent method has 

shown that although thinkings regarding to the most dominant 

inhabitants are mostly correct, the diversity of phyllosphere 

microbial communities is greater than that of previously 

recognized.
[17]

 The 16S rDNA is directly cloned from leaf samples and 

it's analysis has demonstrated that proteobacteria is the most 

dominant group of microbes found on leaves and confirm the data 

that is obtained using culture-dependant methods. In a examinations 

of bacterial communities of phyllosphere in a tropical brazillian 

forest, about 97% of the bacterial sequences were from previously 

undescribed species and data was obtained from the phyllosphere of 

different plant species supporting from 95 to 671 bacterial species.
[18]

 

The extent of diversity occurs in other plant species is uncleared. 

However, 5 of 17 bands cut from 16S rRNA denaturant gradient gel 

electrophoresis gels have less than 90% similarity to database 

entries.
[19]

 

It has been explored in in a study of a range of temperate 

agricultural crop species. It suggests that in some situations 

phyllospheres of crop plants can support large numbers of novel 

bacteria.
[20]

 The large number of sequences investigated in the 

culture-independent studies conducted to date has been limited, so 

that only dominant members of the community are likely to have 

been detected, and the true extent of phyllospheric bacterial 

diversity that's why remains to be determined.
[21]

 Yeasts are the main 

epiphytic fungal group present in the phyllosphere with filamentous 

fungi that are present as dormant spores rather than active mycelia. 

The populations of culturable yeast can range between 10 and 1010 

CFU g
-1

 leaf.
[22]

 The diversity of culturable yeasts appears to be 

mostly limited to three genera i.e. Cryptococcus, Sporobolomyces 

and Rhodotorula. The total species number can reach over 40, with 

large number species of each coexisting in the phyllosphere, along 

with a lot of other genera that occur less frequently.
[23]

 The sizes of 

population of Filamentous fungus can range between 102 and 108 

CFU g
-1

 leaf. Usually, the most abundant considered fungi are 

Cladosporium and Alternaria and found on leaves.
[24]

  

The several other genera, including Penicillium, Acremonium, 

Mucor and Aspergillus are also found. Filamentous fungi appear to 

occur ubiquitously as endophytes. Using culture-dependant method, 

more than 340 genetically different taxa can be obtained from 

individuals of two tropical forest.
[25]

 There is the great evidence for 

host preference within the endophyte community. Culture-

independent method is not still used to characterize fungal diversity 

in the phyllosphere. 

Culture-independent analysis represents a powerful way to 

investigate the dynamics and distribution of specific bacterial groups 

of interest by using phylogenetic specific primers.
[26]

 In terminal 

restriction fragment length polymorphism, we can get several 

phylogentic groups or functional genes that are analysed at the same 

time. T-RFLP provides an opportunity to improve throughput of 

samples in a cost-effective manner.
[27]

 However, these methods 

remain time-consuming and future developments depends upon high 

throughput methods. Phylogenetic microarrays clearly provide a 

method and allow the presence and amount of thousands of 

microorganisms to determine at the same time and can also be used 

to determine the novel members of the phylogenetic groups.
[28]

 In 

the same way, arrays of functional gene provide a way to 

characterize the activity of phyllosphere microbial community and 

used with phylogenetic microarrays for linking the microbial 

community structure to function in well manner. In order to 

determine and understand the structure and diversity of 

phyllopsheric microbial communities, it is very important to 

understand the different environmental and biological factors. These 

factors control the dynamics and establishment of microbial 

communities of phyllosphere.
[29]

 

 

3. Phyllosphere Microbial Life: The Source 

The microbial sources on the phyllosphere are manifold. The 

epiphytic yeasts, bacteria and filamentous fungi arrive on the leaf 

surface through different sources that may be insect-borne, 

atmosphere-borne, seed-borne or animal-borne. The most important 

sources for the colonization of new plants are leaves, tree buds, 

seeds of annual plants and the debris from previous crops. They are a 

main source of bacteria present in the phyllosphere.
[30]

 The microbes 

having no or limited multiplication in the phyllosphere are transient 

epiphytes. Similarly, those microbes that have a capacity for 

multiplication in the absence of wounds are considered as residual 

epiphytes.
[31]

 The populations of microbes can change in size among 

and within plant species over a short time periods. They also have 

great variations on the bases growing season. Some of the epiphytic 
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bacteria are present on leaves after the bud emergence seeds 

formation. 

They are subsequently increasing in the quantity. On the growing 

season, bacteria are dominating and there is a general succession of 

microbial populations on leaves.
[32]

 It followed by yeasts and finally 

filamentous fungi. The composition and concentration of 

atmospheric microflora can vary in diurnally and seasonally. It can 

also change in response to environmental events including rainfall 

and high wind. It directly influences the immigration of microbes to 

the phyllosphere.
[33]

 The agricultural practices like harvesting and 

cultivations also have a great influence on atmospheric microbiology 

and colonization of nearby plants.
[34]

 The impaction onto the leaf 

surface, sedimentation or rain splash and contamination with soil can 

also result in immigration of microbes to leaves from the 

atmosphere. The microbes present on seeds and roots become 

endophytic in the roots.
[35]

 When they enter the vascular system, 

they are transferred internally to the aerial parts of plants. Then they 

establish as phyllosphere endophytes.
[36]

 Endophytes also arise from 

ingression into the internal leaf spaces. Then the colonization by 

epiphytes occurs. It is suggested that epiphytes and endophytes are 

part of the phyllosphere.
[37]

 Micro-organisms present in phyllosphere 

then become established and colonize in leaf to become a residual 

epiphyte.
[38]

 

The distribution pattern of microbes on leaves is not similar at all. 

The epidermal cell wall junctions are the most common sites of 

bacterial colonization. It is especially present in protected sites in 

grooves along the veins, at stomata and at the base of trichomes.
[39]

 

Their major sites of occurrence are under the cuticle, in the cuticle 

depressions and near hydrathodes. They are also present in specific 

sites that only occur on particular plants like pectate hairs in olive 

and stomatal pits in oleander. Generally, the greater numbers of 

bacteria are found on lower leaf surfaces than that of upper leaf 

surfaces. It is possibly because the lower leaf surfaces have a greater 

density of trichomes, stomata or a thinner layer of cuticule. The 

distribution of bacterial populations in the phyllosphere differ in very 

small scales almost as little as 0.1 mm2.
[40]

 They can be often well-

described by a log normal distribution. The distribution of yeasts and 

filamentous fungi is described by a normal distribution in good 

manners. Mostly, the microorganisms occur as aggregates or biofilm-

like structures of bacteria, yeasts and filamentous fungi. Micro-

organisms are also present individually on the leaf surface.
[41]

 All 

micro-organisms present in the phyllosphere don't have ability to 

colonize and grow. It reflects the processes of emigration through 

dispersal mechanisms including rain splash, bounce-off, and wash-

off, removal by insects or water movement. The environmental, 

physicochemical and genetic features of the plant determine the 

ability microbes to survive and grow. The specific properties 

exhibited by the phyllosphere microorganisms determine the 

structure and diversity of the phyllospheric microbial community. 

There are a number of areas that require more complete 

understanding are related to the colonization of phyllosphere.
[42]

 

There are little researches to explore the transmission of microbes 

from roots to aerial parts of plants and have been a neglected area of 

research. 

 

4. Phyllosphere Microbial Life: The Nature and 

Composition 

Phyllosphere microbial communities have a diverse array of 

microorganisms and are typically dominated by bacteria. 

Phyllosphere bacterial communities are less species rich than that of 

rhizosphere.
[43]

 The well represented bacteria on the leaf surface are 

Alphaproteobacteria. These bacteria play vital ecological roles and 

are metabolically diverse.
[44]

 The recent surveys of phyllosphere 

bacterial community composition also explore 

Gammaproteobacteria.
[45]

 The role of the Phyllosphere microbial 

communities is determined on the base of various functions that are 

performed by them. They play vital role in plant health and function 

phyllosphere bacteria because the carry out methyltrophy, 

nitrogenfixation, nitrification, or anoxygenic photosynthesis. The 

next most dominant bacterial lineages in phyllosphere communities 

are Bacteroidetes and Actinobacteria.
[46]

 These two phyla are also 

well represented in the rhizosphere. Bacteroidetes that are present 

in the phyllosphere are from the families of Cytophagaceae or 

Chitinophagaceae. The members of these families are often aerobic 

and pigmented. They are well adapted to the leaf surface. 

Actinobacteria that are present in the phyllosphere includes 

members that are plant pathogens, nitrogen-fixing symbionts, and 

fungal antagonists and decomposers. But many of these roles have 

not been demonstrated in the phyllospheric environment. The 

Actinobacteria are used as afoliar-applied plant growth promoter.
[47]

 

The presence and distribution of archaea in the phyllosphere is less 

common and they appear to contribute a minor to the microbial 

community. Fungi community of phyllosphere is an important 

component of the phyllosphere microbiota.
[48]

 The variety of 

ecological roles are performed by fungal community. This fungal 

community is composed of organisms with a wide range of 

population sizes. It fluctuates in distinct seasonal trends based on the 

growing season. Moulds of Ascomycota on the leaf surface before 

senescence are often the dominant fungi in phyllosphere.
[49]

 Yeasts 

belonging to the Ascomycota and Basidiomycota are other important 

fungi. The fungal microbiome becomes dominated by filamentous 

fungi. The vital role and distribution of other microbial eukaryotes 

including protists on plant leaves is not still well examined.
[50]

 

The next-generation sequencing of community metagenomes 

throughout phyllosphere microbes show highly redundant 

functionality.
[51]

 The environmental conditions i.e. changing 

temperature, low nutrients, humidity high UV etc. select the 

consistent biological traits. Generally, in phyllosphere the metabolic 

diversity exists primarily in the context of utilisable carbon 

compounds.
[52]

 The presence of proteorhodopsin genes related to 

anoxygenic photosynthesis is an adaptations that seem particularly 

useful in the phyllosphere. But still more studies are needed to 

explore this phenomenon. The predominant most important factor 

that influences the composition of the phyllospheric microbial 

community is plant species identity. There is a lot variability in 

microbiome composition within a single plant species.
[53]

 The 

variation in phyllospheric composition represents a combination of 

leaf succession and age along with environmental variation and 

changes in the microbial composition of the atmosphere.
[54]

 Because 

of these dramatic variations, the phyllospheric microbial 
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communities differ significantly on the bases of seasonal time scales. 

Whereas it is expected that the evergreen plants may show less 

influence of leaf age. Spatial differences in the phyllosphere are less 

studied in well manner in individual plant species. The extent to 

which environmental gradients or dispersal limitation that determine 

phyllospheric microbial composition is unclear.
[55]

 

 

5. Phyllosphere Microbial Life: The Leaf as Habitat 

The surface of a leaf works ad home place for diverse bacterial 

communities. The unique environment is perceived by every 

individual cell these communities and then they respond accordingly. 

The single-cell approaches are essential to investigate the behaviour 

at scales relevant to bacteria.
[56]

 The important lessons are provided 

by single-cell studies and it also describe how current omics 

approaches fail to give an accurate description of the behaviour of 

phyllosphere bacterial populations in heterogeneous environments. 

Soon the power of single-cell and omics approaches will be combined 

by upcoming techniques. There are a wide range of microorganisms 

including fungi, bacteria and oomycetes. The phyllosphere, surface of 

aboveground organs of plants, is a large microbial habitat.
[57]

 The 

phyllosphere is dominated by leaves i.e. a heterogeneous topography 

at the micrometre scale.
[58]

 It mostly consists of elevations including 

epidermal cells and grooves between epidermal cells. Mostly, 

stomata, trichomes, hydathodes and glandular trichomes intersperse 

these two most abundant features. The presence, density and 

distribution of which depends upon leaf side and plant species. 

Therefore, many different microhabitats are offered by leave. The 

dense population of microorganisms is founded on the leaf 

surfaces.
[59]

 

Bacteria are the most dominant group of microbes in the 

phyllosphere community. In this habitat, these dense microbial 

populations are given the microclimatic conditions. As the leaves are 

light-harvesting organs and covered by a waxy cuticle layer, it 

provides an environment in which epiphytes constantly need to cope 

with low water, ultraviolet (UV) radiation exposure and high 

temperature fluctuations during day time and also variations within a 

single leaf. Therefore, epiphytes are admired for their ability to cope 

with these combination of environmental stresses.
[60]

 In the previous 

decade, a comprehensive catalogues of microbial life of leaves of 

different plant species was generated by in-depth sequencing 

approaches. It is demonstrated that a diverse microbiota colonize the 

phyllosphere which is specific to each plant species.
[61]

 The leaf-

associated phyllospheric bacterial communities consist of recurring 

taxa at higher phylogenetic ranks and the composition can differ at 

the species level. 

 

6. Phyllosphere Microbial Life: Adaptations to the 

phyllosphere habitat 

On the basis of phenotypic and genetic diversity, it is very difficult to 

characterize the soil microbial communities.
[62]

 Other than plant and 

environmental factors, the extent to which microbial colonists 

explore the properties of phyllospheric microbes adoption is 

determined by themselves and they also determine the extent to 

which they are able to establish phyllospheric microbial communities 

on the leaf surface.
[63]

 Some phyllospheric microbes, have inherent 

ability to survive in the existing habitat and some are capable of 

modifying the environment to reduce the levels ofstress they are 

exposed to and that is why they are able to survive there. It is 

determined by culture-independent analyses that the tolerance to 

ultraviolet (UV) radiation is an important selection pressure for 

growth and survival in a habitat. On the leaf surface, the most 

isolated phyllospheric microbes are capable to withstand with high 

UV radiation levels.
[64]

 Dark melanin-type pigments in fungi are play 

an important role as a protective pigments. Similarly, the UV-B-

induced hyphal wall thickening also lowers the levels of the fungal 

colony.
[65]

 It is demonstrated that the most UV-B-tolerant bacterial 

strains from the phyllosphere of peanut produce pink or orange 

pigments. The multiple mechanisms of UV-B protectant are exhibited 

by phyllosphere microbes. The key limiting factors for microbial 

growth in the phyllosphere is the low level of water availability and 

nutrients. These limitations are overcome by variety of mechanisms 

given by epiphytes. Some surfactants that are released by some 

epiphytic Pseudomonas app. enhance the wettability of leaf. It makes 

the surfaces easier for phyllosphere microbes to use water and also 

increase diffusion and solubilization of nutrients. Therefore, it 

increases the substrate availability for epiphytic bacteria. It is 

demonstrated that a number of phyllosphere bacteria show an 

increase in permeability of the cuticle that enhance the water and 

nutrient availability in the phyllosphere.
[66]

 The mechanism that 

enhance nutrient availability also relate to the ability to produce 

toxins and that affect ion transport across plant cell plasma 

membranes. 

Syringomycin is a toxin that is secreted by plant pathogen i.e. 

Pseudomonas syringae pv. syringae ans eventually cause the cell 

lysis.
[67]

 Whereas the nonpathogenic epiphytic strains of P.syringae 

pv. syringae produce low levels of effect such that necrosis and 

disease do not occur although release of plant nutrients is still 

stimulated. Syringomycin that acts as a surfactant and it provides two 

possible mechanisms to increase the availability nutrient in the 

phyllospheric zone.
[68]

 Similarly, another important and widespread 

mechanism is the production and release of plant growth regulators. 

The indole-3-acetic acid (IAA) is commonly produced among bacterial 

epiphytes.
[69]

 It is associated with increased nutrient leakage and 

microbial fitness. It is demonstrated that the functional type-III 

secretion pathway in Pseudomonas fluorescens and Pseudomonas 

putida provides the capacity for modification of the local habitat.
[70]

 

It may also be needed for growth and survival in the phyllosphere. 

For the bacterial attachment and colonization ofthe phyllosphere, 

the production of pili and flagellae are also important. Another 

important thing for phyllosphere colonization is the range of genes 

and gene products and that are now being identified by using 

molecular techniques. These molecular techniques provide further 

insights into mechanisms involved in epiphytic growth.
[71]

  

As the distribution of bacterial on the leaf surface is not 

uniformed, the aggregates of cells occur. These aggregates provide 

the epiphytes having an ability to survive and colonize in the 

phyllosphere and also modify the local environment.
[72]

 The bacteria 

produce extracellular polysaccharides (EPS) and these EPS protect 

the bacteria from water stress.
[73]

 They are also helpful in anchorage 
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of the cells to the leaf surface. These aggregates also protect from 

predation, bacteriocides and UVR. They also moderate pH and gas 

exchange and also enhance genetic exchange mainly via plasmid 

transfer. Therefore, they show cell density-dependent behaviour. It is 

mediated by accumulation of diffusible molecules like N-acyl 

homoserine lactones via quorum sensing.
[74]

 It also have a lot of 

effects on microbial behaviour like EPS, antibiotic production, 

pathogenicity traits. It is noted that if signalling controls the 

functioning of aggregates, it might be possible in nearby future that 

microbiologists can manipulate the microbial populations on the 

phyllosphere if the molecular signals and receptors that are essential 

for aggregate behaviour are identified.
[75]

 

 

7. Phyllosphere Microbial Life and Plant Genotype 

The phyllospheric microbial populations have great variations in size 

and composition. These variations are both spatially and temporally 

on the same plant and differ between different plants as well as parts 

of plants in the same place.
[76]

 Even they can differ on the same plant 

species in different places. These variations reflect from the 

environmental conditions prevailing at a particular time and at a 

particular place of sampling. Therefore, they influence the processes 

of microbial emigration, immigration, growth and death. However, 

the microbial population of phyllosphere also have a relevance to a 

large extent with the phenotypic characteristics exhibited by the 

plants that are ultimately controlled by their genetic make-up.
[77]

 

It is demonstrated that there are there are some important 

factors that work as hot-spots of microbial growth on the leaf and 

which is associated with specific sites. The genotype has an 

important role in determining establishment and colonization of 

microbial communities within plant species in the phyllosphere.
[78]

 It 

is also demonstrated that the relationship between genetic control of 

plant phenotypic characteristics and their concomitant has great 

effects on phyllospheric microbial populations other than its 

potential importance.
[79]

 Mostly the culture dependent approaches is 

used to investigate the effects of plant genotype on phyllosphere 

microbial communities. In Different nine cotton cultivars, the 

bacterial population sizes and structure differ. Similarly, pea 5 

cultivars contain endophytic bacteria with one showing a higher level 

of colonization than the others.
[80]

  

In one cultivar tomato out of four, in a gnotobiotic system, 

supports some of the Pseudomonas sp. on the shoot exterior and 

followed by bacterial application on the seed.
[81]

 In different cultivars 

of snap bean, the differences in ability to support populations of 

Pseudomonas syringae pv. syringae is also found.
[82]

 However, there 

is no differences in occurrence of native, epiphytic mycoparasites of 

three main coffee cultivars or clones of the same group.
[83]

 Similarly, 

there is also no differences between epiphytes on three cultivars of 

apple
[84]

 as well as in endophytes in three cultivars of wheat.
[85]

 The 

particularly valuable and important approach for elucidating 

interactions between plant genotype and phyllosphere microbial 

community structure is Culture-independent community profiling 

approach.
[86]

 It is indicated by several studies that various different 

cultivars of the same species of plant have different phyllosphere 

microbial populations. It is founded that the phyllospheric microbial 

populations of bacteria is different in various cultivars of sweet 

pepper and tomato.
[87]

 As well as both epiphytes and endophytes 

also differ in various varieties of potato.
[88,89]

 

Some of the microbial communities are more affected by plant 

genotype than others. It is demonstrated that there are the great 

variations in phyllosphere bacterial community structure of wheat 

cultivars. Although there are no any specific differences in archaeal 

communities.
[90]

 Similar studies has been made on lettuce cultivar 

which demonstrates the colonization of leaves by Salmonella 

enterica,
[91]

 with significant serovar–cultivar interactions 

demonstrated. Furthermore, diversity of endophyte bacterial 

populations varies between the three cultivars lettuce. It is suggested 

from data that the degree to which S. enterica is able for endophytic 

colonization of plants part which is determined by competitive 

interactions with the natural community of endophyte bacteria. It is 

shown from the culture-dependent analysis that genetic modification 

of plant with an antibacterial peptide failed to have influence on 

number or structure of phyllospheric bacterial or fungal populations. 

Although magainin in case of potato tubers doesn't exhibit lower 

total numbers of bacteria than then that of unmodified plants.
[92]

 

The modification of potato has been made with a gene that 

produces antibacterial T4-lysozyme or attacin ⁄ cecropin. In contrast, 

it is shown that it induces greater difference in phyllosphere 

microbial community structure and which is relative to variations 

between three cultivars. The difference in field site and different 

plant growth stage has greater influence on phyllosphere bacterial 

community structure than that of cultivar or genetic modification. 

The microbial communities having different genotypes have different 

responses to environmental variables. It is demonstrated by the 

various experiments that there are various alterations in endophyte 

bacterial community structure chilling sweet pepper plants related 

extent of the effect difference between various cultivars. It also 

depends upon cultivar chilling tolerance. 

It is shown in wheat cultivars that the response of phyllosphere 

bacterial communities to UV-B radiation depended upon host 

genotype. But it is not cleared that these variations reflect the direct 

effects on phyllosphere bacterial community and indirect effects 

associated with variations in the plant responses to UV-B. 

Furthermore, the colonization and survival of microbial inoculants 

are greatly influenced by plant genotype in the phyllosphere.
[93]

 The 

plant growth promoting Azospirillum inoculant's survival differs in 

the phyllosphere of tomato genotypes. The response of the 

phyllospheric bacterial community to inoculation changes between 

different genotypes. There is limited data on plant genotypic 

diversity relationships in case of fungi. Although, it has been 

demonstrated by various studies that differences in the nature of 

endophytes are associated with contrasting host genotypes. The 

distinct phyllospheric communities of endophytes are associated 

with various Populus hybrids.
[94]

 

Although for the determination of structure of phyllosphere 

microbial communities, the plant genotype works an important 

factor and the mechanisms for controlling these interactions remain 

to be explained. The potential for examining plant genotype–

phyllosphere microbiology interactions is shown by various plant 

science resources. The mapping populations
[95]

 have a great potential 

to identify plant genes that is controlling leaf microbiology in 

particular recombinant inbred. 
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8. Phyllosphere Microbial Life: The Future 

Directions 

The culture-independent molecular analysis of phyllosphere 

microbial populations is still in progress. The recent studies has made 

it cleared that the actual phyllosphere microbiology is more complex 

than that of previously understood. Although a lot of studies and 

progress based on these studies has been made in order to explain 

the structure and distribution of phyllospheric microbial 

communities. There is very little knowing about the functional 

consequences of the phyllospheric microbial communities and their 

compositions that are vital for favouring the individual plants. Its 

knowing is also very important for the quality and microbiological 

safety of fresh produce and various environmental processes. 

Microbial communities get access to phyllosphere by atmospheric 

deposition from plant and soil sources. They can also colonize plants 

via roots and then become transported to aerial plant parts. The vital 

relative importance of these mechanisms remains to be determined. 

 

9. Conclusions 

The phyllospheric microbial colonization and establishment has been 

recognized and to be the result of interplay between plant, 

environmental variations and the physiological characteristics of 

microbial communities. The contrasting genotypes can support 

different microbial communities within plant species. These 

understanding provide an opportunity to understand the molecular 

mechanisms. Through these mechanisms the plants control microbial 

populations in the phyllosphere. Various methods are provided by 

these studies to manipulate phyllosphere microbial communities 

through plant genotype. It provides the exciting opportunities in 

order to manage applied aspects of phyllosphere microbiology. 
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