
 

 
19 

Nano Progress Research Article  

Nano Prog., (2021) 3(6), 19-34. 

 

 

 

DOI: 10.36686/Ariviyal.NP.2021.03.06.030                                                                                                                       Nano Prog., (2021) 3(6), 19-34. 

  

 

A Few Notes on the Wave Absorption Applied to Cloaking Problem 
 
Vladimir V. Arabadzhi 
 

Institute of Applied Physics (RAS), 603950, Box-120, Nizhny Novgorod, Ulianov st. 46, Russian Federation. 

 

*Corresponding author E-mail address: v.v.arabadzhi@appl.sci-nnov.ru 
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ISSN: 2582-1598 Abstract: J. Pendry's perfect cloaking solution is briefly considered. Other approaches with absorption of waves are 

considered too: absorbing coatings, black holes,… In addition, well-known approaches to describing black body 
diffraction are discussed for sound waves and electromagnetic waves as waves without dispersion. The formulations of 
black body definition of are corrected as the review progresses. The alternative conception of "black body" (in the 
wave diffraction sense) is represented in this article for electromagnetic waves. For several decades, many researchers 
have tried to find a structure (constant in time, and with field representation by complex amplitudes at any frequency) 
of an absorbing shell that would satisfy simultaneously (jointly) the following conditions: (a) effective absorption (and 
cloaking); (b) a spatial ultra-wide absorption band (i.e. the absorption efficiency is independent of the spatial frequency 
or of incident wave direction), (c) an ultra-wide absorption frequency band (i.e. the absorption efficiency does not 
depend on the incident wave time frequency), (d) the small thickness of the absorbing coating compared to the length 
of the absorbed wave and to the geometric dimension of protected body. But without full success (i.e. without (a), (b), 
(c), (d) all together), because: (1) any wave to be absorbed need time (more or equal to its period) and distance (more 
or equal to its wavelength) to have time to make a work (if we do not make conversion its frequency) on the absorber; 
(2) in passive systems with parameters constant in time, the interaction of absorbing elements at the frequency  of the 
incident wave is inevitable. Now remind that in all these years microelectronic technologies (designed for computers 
and according Gordon Moore’s law) have been intensively developed: the miniature and rate of the element base (or 
the spatial-temporal resolution). On the other hand wavelengths that were intended to be absorbed by the “black” 
shells remained the same due to the constant conditions of the long-range propagation of these waves. This work is an 
attempt to use the great successes of nano-electronics to satisfy conditions (a)-(d) jointly. The required level of nano-
electronics development is very high, but quite real today. 
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1. Introduction 

Cloaking generally refers to certain actions and devices designed to 

make it difficult to detect a physical body or make it less visible 

against some background, such as camouflage in soldiers or 

coloration in animals. This article will consider the following 

formulation of the cloaking problem for linear non-dispersive waves 

(acoustic or electromagnetic for instance, the choice is motivated by 

the simplicity of presentation).  A plane wave falls on the protected 

body  ̂ (with a characteristic linear size   ) in the direction 

  | |     (the field of this wave in the absence of the body  ̂ is 

equal to        , Fig. 1-a) with the frequency and wavelength 

        ( c -speed of wave propagation). Below we call cloaking 

various ways to reduce the distortion (scattering) of the incident 

wave field    
by the body in the far zone of the body  ̂, i.e. at a 

distance          | |  from the body  ̂. In this article, we will 

consider various methods of masking using a masking layer  ̂ (with 

an outer surface  ̂ , an inner surface  ̂  and a minimum thickness 

     
   ̂     ̂ 

|   ̿|  

or a cloaking box  ̂  (below we also will call this as “layer”, “shell”, 

”area” too) in which we must place the protected body  ̂. From 

outside the cloaking box  ̂ occupies an area of space  ̂  bounded by 

the outer surface  ̂  (with an outer linear dimension  ); the area  ̂  ̂ 

is intended to place the protected body  ̂. The masking box  ̂ (layer 

 ̂) must simultaneously satisfy two conditions: be invisible from the 

outside (i.e. the outer far scattering field         (to be 

reduced)  of  box  ̂, propagating radially in all directions   | |    ); 

be opaque for external waves (the wave field        ̂  ̂    ) for 

any     ,or:  

 

(      ̂    )  (      ̂  ̂   )                                                          (1) 

 

The zero fields inside the cloaking box is needed in order to be 

placed in  ̂  ̂ the protected body  ̂ with arbitrary scattering  
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characteristics.  We assume that in order to satisfy conditions (1), we 

can create a special filling inside the layer  ̂ in the form of a special 

distribution  ̂ of the parameters of the layer  ̂: in Sections 1 to 3, this 

is a time-constant spatial distribution  ̂    of parameters, and in 

Section 4, this is a time-variable spatial distribution  ̂      

distribution of layer  parameters. Generally speaking, as a result of 

minimizing scattering, the distribution can also depend on the 

direction   and frequency   of the incident wave, i.e.  ̂       . 

The quality of cloaking will be further evaluated by either the value 

 ̅        (or the value             ) that needs to be 

minimized somehow, i.e.  ̅    or either    . Here                    

                    is the area of the scattering cross-

section of the cloaking box  ̂,       is the cross-section  of the box 

 ̂ projected onto the plane of the front of the incident wave    (in 

the general case          ),                     
is the 

area of the backscattering cross-section of the box  ̂,          is 

the power of the scattering field going into the rear infinite half-

space,    
is the power flux density in the plane incident wave   , 

                    
is the cross-sectional area of the 

forward scattering of the box  ̂,         
 
is the power of the 

scattering field going into the forward infinite half-space.                                        

        The purpose of this article is to find opportunities for creating 

such a cloaking box  ̂ that can simultaneously satisfy (i.e. 

                        ) the following conditions: 

 

(1C)  ̅          (or                   

(2C) Fulfillment of requirement (1C) within range  ̂ of frequencies   

should not require restructuring of the functional structure  ̂  of the 

layer  ̂ for a given frequency  , i.e.  ̂   ̂     ̂     . The 

frequency range    ̂              and wavelength 

        range    ̂             must be so wide that the 

conditions           and          are met, where     , 

                  ,                are the bounds of 

above ranges;   
(3C) Fulfillment of requirement (1C) within a range    ̂ of 

directions   should not require restructuring of the functional 

structure  ̂ of the layer  ̂ for a given direction  , i.e.  ̂   ̂    

 ̂     ; 

(4C) The surface  ̂  
has any shape and size; 

(5C) The minimum wall thickness   of the box  ̂ is small compared to 

the minimum wavelength of the range    ̂, i. e.       . 

 

    In other words, conditions (2C), (3C), (4C) assume the 

functional homogeneity of the layer  ̂ filling  ̂   ̂   in the 

tangential direction (with respect to the surface  ̂ ). 

 

2. Three known ideas for scattering suppression 

In Fig. 1, three possible options for cloaking boxes are presented: an 

active cloaking box (   , by Mangiante [1], Fig. 1-b), a passive 

refraction cloaking box (   , by Pendry [2], Fig. 1-c), a passive 

absorbing cloaking box (   , by Kirchhoff [3], Fig. 1-d), where 

“passive” means the zero right part in wave equations and boundary 

conditions, “active” means the corresponding nonzero right part.  

(1) There is an active (this means source control on the right-hand 

side of the wave equation or boundary conditions) solution (Fig. 1-b) 

to the problem of acoustic masking, investigated by Mangiante G.
[1]

 

for spatially one dimensional case: a specially selected combination 

of one-sided emitting sources (and one-sided receivers) creates a 

field      
outside the box  ̂ and a full (together with incident 

wave) field      inside the box  ̂ (i.e.      ̂  ̂).  Unidirectional 

emitters and receivers ensure system stability. The main 

disadvantage of this approach is that there is no explicit causal 

analytical expression for the complex amplitudes of the sources (on 

the frequency  ) in terms of the measured field values for 2-3 

dimensional cases, where for this it is necessary to solve the integral 

equations over the surfaces  ̂  
and  ̂  the integral equation for the 

complex amplitudes of the emitters and the signals of the receivers.   

(2) In the passive (right parts of wave equation and boundary 

conditions are zero)  solution obtained by Pendry et al. (see section 2 

below and Fig. 1-c)), the layer  ̂ forces the incident wave (rays) to 

flow around the region  ̂  ̂ without distorting the field from the 

outside  ̂. 

(3) Kirchhoff black body approximation: backscatter suppression 

based on the absorption of the incident wave energy (see section 3 

and Fig. 1-d). 

 

3.  On the perfect solution to the masking problem   

Speaking of masking, it is impossible not to dwell briefly on a very 

beautiful solution (for sound and for electromagnetic waves), 

described, for example, in,
[2]

 although there is no absorption of 

waves or any dissipative elements at all. In this work, were found  

 
Fig. 1. (a) Power flux in a plane incident wave    (with direction  ) and 

in the far scattering field    (in radial directions  ) due to a body  ̂ with a 

characteristic size   ; (b) active suppression of the scattering field using 

unidirectional emitters and unidirectional receivers; (c) passive stray field 

based on the negative refractive index of the shell  ̂; (d) suppression of 

the backscattering field using an absorbing shell   ̂. 
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some special distribution (for the frequency   of plane incident 

wave), constant in time spherically symmetric distribution 

 ̂   ̂     , of parameters inside spherical layer  ̂  (or cloaking 

shell  ̂) with negative refractive index. Due to this distribution 

 ̂      of parameters, a plane incident wave (falling on a layer  ̂) is 

carried away into the layer  ̂ without penetrating into the inner 

spherical (or cylindrical) region  ̂  ̂ of the layer  ̂  and goes outside 

in the form of the same plane wave (Fig. 1-c). The incident wave, as it 

were, flows around the region  ̂  ̂        ̂  ̂   , or more precisely 

speaking |      ̂  ̂|  |  |) penetrating only into the shell  ̂, and 

leaves it without any distortion (without scattering, i.e.       ̂     

or more precisely speaking |      ̂    |  |  |).  This is an ideal 

cloaking for all directions w of incident wave and one frequency  . 

The combination of a reflectorless entry (      ̂    ) of waves into 

the shell  ̂ with an appointed channelization (      ̂  ̂   ) and 

refraction is possible only at one frequency   for special structure 

 ̂     , another frequency   requires another structure  ̂     . 

This is due to inevitable (for the systems with parameters constant in 

time) interaction of shell elements on the frequency of incident wave. 

But the fulfillment of above two conditions even at least at one 

frequency   (for the structure  ̂     ) is a remarkable fact!  

Below we will present several limitations on applications of this 

solution. Perfect cloaking
[2]

 forces the power flux lines of the incident 

wave from the cross-sectional area       of the ball of radius     

to concentrate in a flat ring with radii     and         (see Fig. 1-

c). Therefore, at     (as we want, see Fig. 1-c) the intensities of 

the wave fields inside the cloaking shell become in         times 

greater than in the incident wave, and can go beyond the limitations 

of the linearity of the medium.  

The non-sphericity of the shell  ̂ surface  ̂  (Fig. 2-a, even with a 

plane front of the incident wave), as well as the non-sphericity of the 

incident wave (Fig. 2-b, even with the sphericity of the shell  ̂) cause 

an undesirable dependence of the shell  ̂ structure  ̂        on the 

direction   of the incident wave (  means “exist”,  ̅ means “does 

not exist”). Concave surface  ̂  
areas (Fig. 2-d) completely contradict 

the solution.
[2]

 Note that the difference in wave velocities inside the 

shell (for example,   and           as shown in Fig. 2-c) means 

anisotropy, and anisotropy inevitably gives rise to wave dispersion 

and a phase decay in structure  ̂       efficiency, for frequencies 

    . 

Until now, we have assumed that the incident wave has always 

been (monochromatic problem). Now we will try to consider the 

problem with initial conditions and assume that the front (width 

    ) of a plane incident wave    with the frequency   and 

wavelength   moves towards the shell  ̂ in the direction  , and, in 

one case ( Fig. 2-d) before contact with the incident wave, the area 

 ̂  ̂ is empty (i.e., filled with an external homogeneous medium), 

and in another case (Fig. 2-e), the protected body  ̂ (scattering body 

 ̂) was already in the area  ̂  ̂ before contact with the incident 

wave.  So we will assume that at the moment     the leading front 

of the incident wave have touched by its front point to the nearest 

point of the surface  ̂ .  

Limitation on the wave thinness     of the cloak  ̂: generally 

speaking, we can consider the monochromatic masking problem 

(fulfilling the condition       ̂             ̂  ̂   ) as an analog 

of antennas synthesis in the case of superdirectivity).
[4]

 

Hypersensitivity to the accuracy of manufacturing oscillators can 

occur with a small wave thickness (     ) of the shell  ̂. A stable 

synthesis (admissible sensitive to implementation errors, very finest 

tuning) of such a distribution is possible with a sufficiently large wave 

thickness of the shell (     ), i.e. in the ray approximation. 

Now to begin with, we note that a metamaterial (shell  ̂  
structure  ̂) can be considered as a big set of discrete oscillators (as 

usually happens in practice) located at separate points from each 

other and interconnected between each other by both wave fields 

and special dynamic circuits (independent of time). The incident 

wave generates oscillations of these oscillators (or shell  ̂ elements). 

 
Fig. 2. To the different cases of perfect cloak: (a) a non-spherical shell or a 

non-planar incident wave lead to a dependence of the shell structure 

 ̂      on the direction   of incident wave; (b) concave shell shape is 

unacceptable; (c) anisotropic difference in phase velocities (  and 

       ) on different trajectories causes inevitable wave dispersion 

      . Transient modes of with empty area  ̂  ̂ (d): (d1)       

 , incident wave is entering the shell; (d2)      , establishing 

interaction between shell elements, scattering is not limited; (d3)   

   , the desired stationary mode of oscillations. Transient modes with 

body  ̂ to be protected inside  ̂  ̂ (e): (e1) entering the shell; (e2) 

establishing interaction between shell elements, scattering is not limited; 

(e3) stationary mode of oscillations (desired mode?). 
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Solution
[2]

 becomes relevant (i.e.,{      ̂    } {      ̂  ̂   }) 

only when (at       atleast) the vibrations of the shell  ̂ elements 

have reached their stationary complex amplitudes, and in the 

absence of any scattering (opaque) body  ̂ in the region  ̂  ̂.         

In Fig. 2-d and Fig.2-e schematically represented three states of 

the system (shell  ̂):         onset,         tuning through 

the interaction of oscillators (transient process),        stationary 

(monochromatic at the frequency of the incident wave) oscillations 

of all elements of the shell. An important feature of the 

monochromatic (stationary) problem is the fact that each oscillator 

already “knows” about the oscillations of each other oscillator (unlike 

the transient process), so we need     . Comparing Fig. 2-d and 

Fig. 2-e, it is easy to see that: if the tuning of the oscillators (shell  ̂ in 

the absence of a body  ̂) to a stationary mode (in which the 

condition {      ̂    } {      ̂  ̂   } is satisfied due to the 

interference of fields of all oscillators) occurs in time       (this 

means the frequency band width         ). Then in the 

presence of a scattering body  ̂, the stationary amplitudes and 

phases of oscillations of the oscillators are unlikely to coincide with 

similar values in the absence of a masked body  ̂. Dissipation in the 

solution
[2]

 is absent, but the damping of transient processes occurs 

due to the radiation of oscillators to infinity. 

On the other hand, the reasoning just above presented should 

not be taken into account if the wave thickness       of the shell 

 ̂ is large and the layer  ̂ (area of thickness  , see Fig. 2-d3) of the 

reactive field of the oscillators in the region does not touch the body 

 ̂. However, as mentioned in Section 1, we are interested in the 

possibility of effective cloaking at      . Thus, the solution 

discussed above satisfies condition (1C), but cannot simultaneously 

satisfy conditions (1C)-(5C) formulated in Section 1, due to the 

inevitable (for a systems with constant parameters in time) 

interaction of the shell  ̂ elements at the frequency of the incident 

wave. 

 

4. Review of the Concepts of a Black Body with 

Parameters Constant in Time 

Below we will consider various approaches to the cloaking problem 

based on the absorption (unlike Section 2) of incident waves. 

Absorption is the transformation of the energy of the incident waves 

into energy of a different nature, for example, into heat. If the 

incident wave performs work on any device, then its energy is 

converted into heat and energy of scattered wave field. We begin 

with the concept of a black body (BB), which plays a fundamental 

role in the problem of cloaking. 

 

4.1. Definition of Black Body 

Kirchhoff in 1860 introduced the theoretical concept of a perfect 

black body with a completely absorbing surface layer of infinitely 

small thickness, but Planck noted some severe restrictions upon this 

idea.
[3,5,6]

 What physical body is capable of satisfying these conditions 

formulated by Kirchhoff? The search for an answer to this question 

goes in two directions (generally speaking connected with each 

other) of research: (   ̂) the internal problem of black body 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

concerns the searching of BB’s internal functional structure  ̂    ̂  

(the process of converting wave energy into heat in the layer  ̂);  

(   ̂) external problem of black body concerns the diffraction of 

incident waves on the BB (traditionally this is the formulation of 

boundary conditions on BB’s surface  ̂ ).  

 

4.2. Black Shell  

We note immediately that, according to Kirchhoff's definition, all the 

fundamental properties and functions of a black body  ̂ are 

concentrated in a thin absorbing layer  ̂ (black body (Fig. 3-a)   
black shell (Fig. 3-b)   black box (Fig. 3-c)), and thickness   is 

considered small relating to all scales including to the length   of the 

incident wave (recall that this condition coincides with the cloaking 

requirement (1C)-(5C) in above section 1). So a black shell  ̂ is a full 

equivalent of black body (Fig. 3-d) in relation to an outside observer 

at a point    ̂, and the black shell  ̂ represents a free space (Fig. 3-

e) or an anechoic chamber in relation to the inner observer at the 

point     ̂  ̂ . Figs. 3-d, 3-e presents the cases of spatially 

coherent incident waves (spherical). Fig. 3-f present the case of 

spatially incoherent (or diffuse one) incident wave, where the 

 
Fig. 3. To the Kirchhoff's definition of a black body: (a) a black body  ̂ 
with a surface  ̂ ; (b) an "infinitely thin" absorbent (black) layer  ̂ of 

thickness  ; (c) masking black box, a cavity  ̂  ̂ with zero field inside the 

inner surface  ̂  
of the black layer  ̂; (d) an observer (or source  ̂) outside 

the black body, and in the region  ̂  ̂  there is zero field; (e) an observer 

(or source  ̂) inside the area  ̂  ̂ "sees" free space as in anechoic 

chamber ; (f) no shadow in the diffuse incident wave field; (g) the case of 

a plane incident wave with direction   and frequency  ,       is the 

geometric cross section of the black body,    
is the absorption cross 

section of the black body,         is the cross section for scattering 

into half-space     , and         is the cross section for scattering 

into half-space     . 
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shadow does not arise at all.  On the other hand the field in the 

region  ̂  ̂  is always zero      (i.e., a masked body can be placed 

there). Unlike the ideal masking described in Section 2., the zero field 

     in the protection area  ̂  ̂  is created not by superposition of 

the scattering fields of individual elements (oscillators) of the shell  ̂, 

but by absorption in it (conversion into heat). Max Planck
[6]

 noticed, 

that Kirchhoff's perfect black bodies that absorb all the radiation that 

falls on them cannot be realized in an infinitely thin surface layer, 

and impose conditions upon scattering of the light within the black 

body that are difficult to satisfy. 

We would dare to add a few simple words to this note by Max 

Planck: (1) any wave (of length  ) to be absorbed (to make work 

against dissipative forces and be converted into heat) needs spatial 

interval about     (and time interval about     ). Determination 

of BB according to Kirchhoff works well at large wave sizes of the 

body (      ) and large wave thickness of the absorbing layer 

(      ). However, the last condition clearly contradicts the 

infinitely thin layer mentioned by Kirchhoff.   

 

4.3. Shadow of Black Body.  

In the Kirchhoff definition of BB, it is said about the casting of a 

shadow by a black body. This statement implicitly says that the field 

of incident waves is spatially substantially anisotropic, i.e. is not a 

diffuse wave field (diffuse incident wave field arises in the problems 

of chamber acoustics with criteria of maximum absorbed power, see 

below Section 3.6). For a plane incident wave with a direction   of 

propagation, let us refine this formulation in terms of the scattering 

cross sections. In this case, the total scattering cross section       in 

all directions    (meaning the scattering field in the far zone of the 

body) can be represented by two terms (see Fig. 3-g): the backward 

scattering cross section         (into the half-space     ) and 

the forward scattering cross section         (into the half-space 

    ). Moreover, for an ideal black body at      , the 

absorption cross section                    is equal to 

the forward scattering cross section and the geometric cross section 

     
 
of the black body (projection of the body onto the plane front 

of the incident wave, see Fig. 3-f), and the back scattering cross 

section is ideally equal to zero (or in practice              ), 

this is there is a definition of "blackness" of the body. The forward 

scattering cross section         is not limited in this case 

(е         ). Note that, for example, an attempt to minimize 

forward scattering           (with a free value        ) 

would inevitably entail minimizing backward scattering (     

    ) as well, i.e. this leads us to transparent body  ̂ at 

parameters constant in time.  The backscattering cross section 

       
 
is also called the body's effective scattering surface, and 

the value                 characterizes the cloaking 

efficiency. 

 

4.4. Black Body as a Source of Shadow   

Let's make one more note about the casting of a shadow by the black 

body along the incident wave. Specifying the internal structure of a 

black body on the basis of its diffraction properties is an ill-posed 

problem and it has many options for solutions, including an active 

solution: from the point of view of an outside observer, a black body 

can be interpreted as some transparent (not reflecting source on the 

right side of the boundary conditions or wave equation) source  ̂ of 

one-sided (only behind the body) radiation. Absorption of the 

incident wave can be interpreted as the performance of work by the 

incident wave. This work is applied to a one-sided radiation source 

 ̂ (similar to the Huygens source, see Section 4.4.1. below). An 

incident wave with an amplitude    per unit time performs work 

    over the source  ̂. In the process of performing this work 

(and oscillations of source  ̂) scattered wave is generated with 

amplitude    and propagating (mainly) in the direction  , and the 

power (dissipation power) carried by this wave to infinity is equal to 

  and this is close to the power that the incident plane wave carries 

in the geometric cross section    
of the body  ̂. Waves generated by 

such a source  ̂ against the background of an incident wave     

could be called waves with negative energy, if this term had not 

already been attached to other problems. In this case, the energy of 

the incident wave can be converted not into heat, but into the 

energy of a source (a source of electromotive force in the case of 

electromagnetic waves) feeding a one-sided emitter  ̂. 
 

4.5. Models for External Problem of the Black Body. 

The external problem of a black body is the approaches to solving the 

problem of diffraction of an incident plane wave by a black body. 

Despite Kirchhoff's idea that all the "blackness" of a black body is 

concentrated in an infinitely thin layer  ̂ (literally, a layer, and not on 

the surface  ̂ ), all researchers when setting the problem of plane 

wave diffraction (with frequency   and direction  ) by a black body 

only through the setting of boundary conditions (for simplicity for 

acoustical potential        on the frequency  ) of the form 

 

                                    for    ̂ ,                 (2) 

 

where     ,      are time-constant parameters on the black body  ̂ 
surface    ̂ ,   is a unity (| |   ) normal to  ̂  (the boundary 

condition with zero source     in right-hand side is called passive, 

and the boundary condition with nonzero source      in right-hand 

side  is called active). At the same time, they assumed that wave 

processes in the region  ̂  ̂ (from the internal problem of the BB) 

cannot distort the need boundary condition (2). In addition we note 

that condition (2) can be applied only to waves without dispersion. 

Many attempts have been made by researchers to create the 

properties of a BB given by Kirchhoff's definition by varying the 

values     ,     ,       , i.e. boundary conditions on the surface 

   ̂ . Below, we will briefly describe three main directions 

(strategies) in solving the problem of diffraction on a BB (Fig. 4): (a) 

matching of the wave field or Kirchhoff’s model
[3]

; (b) maximization 

of the absorbed power or Macdonald’s model; (c) matching of the 

impedances or Weston’s model. Each of these three models is the 

transfer of strategy of one-dimensional wave problem (with the 

same idea of reflectless entry into BB and with identical results) into 

a 2-3 dimensional wave problem (with different results, see Fig. 4). In 

a spatially one-dimensional problem, all three strategies just 

mentioned (a), (b), (c) give the same result: absorption 

coefficient  ̃   , reflection coefficient  ̃   , transmission 

coefficient  ̃   . However, in 2, 3-dimensional problems, each of 
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the strategies lead to fundamentally different results. Now let us 

briefly outline the essence of three approaches to solving the 

external problem of blackbody. 

Kirchhoff's method
[3]

 (a) consists in the fact that on the 

illuminated (i.e., at     , where      is the outer normal to the 

surface  ̂ ) side of the surface  ̂ , the field       is equal to the 

field of the incident wave, and on the shadow side (at     ), the 

field     is zero. For a Kirchhoff’s black body at an infinitesimal 

wavelength      , the following relations               

  are satisfied for the blackbody absorption cross section   , 

backscattering cross section        , and the geometric cross 

section       of the body itself. This boundary condition is active, 

since          at      and       at     ,     

(boundary condition depends of   at any shape of  ̂ ). 

MacDonald's method
[7]

 consists in setting the normal velocity 

     at the boundary, where            is the normal velocity 

arising from the scattering of the incident wave    at the free 

boundary  ̂  (i.e., with at the boundary with zero pressure or   

 ). This provides strictly                     and the 

maximum absorbed power, but does not guarantee a small 

backscatter cross section        . For smallness        , it is 

necessary for the pattern        to radiate very weakly (in the 

absence of an incident wave   ) in the directions     , or, in 

other words, at                     . This boundary 

condition is active, since         ,     (boundary condition 

depends of  ).even at any shape of  ̂ ). Only for the McDonald 

boundary condition is it possible     , i.e. a reversal of the power 

flux lines (with local vector  ) on the back of the body  ̂. The 

disadvantage of masking under active boundary conditions is their 

dependence on the direction   of the incident wave, which gives rise 

to the dependence of the structure  ̂   ̂      on  . On the other 

hand, MacDonald's black body may not be effective in disguise, but 

an effective one in the task of reducing the rumble of the halls (Figs. 

3-e, 3-f). 

And, finally, the third way to suppress reflection from the 

boundary in a one-dimensional problem (where also the approaches 

of Kirchhoff and MacDonald originated) is to match (equalize) the 

boundary  ̂  impedance    
and the impedance    of the incident 

wave. Weston
[8]

 brings this approach to a 2-3 dimensional problem. 

Let   

 
 be the pressure of the scattering field of the incident wave on 

the body  ̂, and   

 
the pressure of the incident wave. The normal 

speed of the boundary  ̂  
according to Weston is      , where 

        is the total sound pressure at the surface  ̂ ,    local 

impedance of surface  ̂ . The normal matched velocity of boundary 

consistent with the incident wave (i.e. the velocity at which there is 

no scattering or     ) of the boundary  ̂  is             ., i.e. 

       even at      . It is easy to verify that the boundary  ̂  

oscillating at the Weston speed        in a 2-3-dimensional 

problem (as opposed to a one-dimensional problem) scatters the 

incident wave, i.e., strictly speaking; it does not provide a 

reflectionless entry of the wave into the black body. This causes the 

absorption cross section       to be somewhat smaller than the 

body cross section   , and, accordingly, some flow of power flux 

lines   around the body  ̂. Weston's boundary condition is passive, 

i.e.       ,                , and it is indifferent to the 

direction of the incident wave (i.e.  ̂   ̂    at any shape of  ̂ ) and 

could serve as the basis for the development of a black shell (albeit 

not ideal in principle), if not for the lack of an answer to the question: 

how to convert wave energy into heat. 

So for a monochromatic problem, the exact execution of a non-

scattering input inevitably assumes (in 2D, 3D case and at parameters 

constant in time) the same output, i.e. body transparency leaving no 

room for absorption. For an exact solution (at parameters constant in 

time), only a choice is possible: either a transparent (without 

scattering) body without absorption, or absorption with considerable 

scattering at the input. 

 

4.6. Attempts to implement the black body at parameters constant in 

time. 

In this section, we will present a brief overview of attempts to solve 

the internal problem of a black body: creating an internal structure 

 ̂     (  -incident wave frequency) of a black body  ̂ that converts 

wave energy into heat with little backscattering at     and all 

conditions (1C)-(5C) at parameters constant in time, i.e.   ̂    

  and frequency    of waves inside  ̂ is equal to the frequency 

     of incident wave.         

We already know from Kirchhoff's definition that all the functions 

of the black body  ̂ are performed by a thin shell  ̂. However, one 

cannot but dwell on the description of the pinhole camera as the 

 
Fig. 4. On the genesis of three strategies for constructing a black body 

model from a one-dimensional problem to a three-dimensional one. 

Black on the surface  ̂  marks the area where the power flux lines reach 

the surface, and white - where they do not. The gray cloud marks the 

region of the near field (reactive field), which bends the power flux lines 

with the local vector  . The boundary conditions arising as a result of 

each of the strategies are indicated. 
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historically first and ingenious version of a black body, as well as the 

first version of a black hole. The pinhole camera (Fig. 5–a1) is a light-

impenetrable (reflecting) box  ̂ (with an outer surface  ̂  and a linear 

dimension  ) with a cavity  ̂  ̂ (with a surface  ̂  of a dissipative 

layer  ̂ with a thickness    ) with a hole  ̂  (a “black hole” with a 

size YB  ). Any light ray entering the hole  ̂ is repeatedly 

reflected from the surface  ̂  (under which the dissipation is 

concentrated, i.e., the transformation of wave energy into heat) of 

the cavity and exponentially decreases its power with an increase in 

the number of reflections. The probability of the ray escaping 

(through the same hole  ̂) from the pinhole camera trap is close to 

zero. Thus, the rays that hit the hole are not reflected, and the hole 

of the pinhole camera is actually a black body. The pinhole camera 

assumes beam optics (     ) and does not contain a cavity 

with a zero field to accommodate the cloaked body  ̂, which also 

does not meet the requirements (1C)-(5C) of cloaking presented in 

section 1.  

Let's turn the pinhole camera  ̂ cavity  ̂  ̂ inside out and cover 

the hole  ̂ with a layer . Now there will be a fully reflective surface 

 ̂  on the inside and a layer surface  ̂  
on the outside (Fig. 5-a2). On 

the one hand, in order for the wave reflection at the entrance to the 

layer to be weak, it is necessary that the attenuation length    (the 

length    
of the path on which the wave amplitude decreases by a 

factor       due to volume dissipation) in the layer  ̂ medium 

should be significantly greater than the incident wavelength  : 

    . On the other hand, for a wave to be substantially absorbed 

in a weakly dissipative medium of a layer  ̂ along a path with a length 

  , the layer thickness   must be large enough:       . The wave 

   
(Fig. 5-a3) of the reflection from the outer surface  ̂ , and the 

wave    completely reflected from the inner surface  ̂  
and 

outward, attenuated by absorption on the path length    must both 

be small compared to the incident wave   , i.e. (|  | |  |  

 |  | |  |   . Thus, the reflectionless input of the wave to  ̂ is 

combined with effective absorption in  ̂ due to the large thickness   
and weak volume absorption (i.e        ) where    is the 

wavelength in the shell  ̂ medium (at                 ) and, 

in other words, the weak interaction of the absorbing elements of 

the shell at the frequency of the incident wave (Fig. 5-a4).  

Dissipative cladding is a known way to darken window panes. In 

practice, such a shell is simple, reliable, broadband, but too thick and 

heavy (for aviation for instance). Further work was associated with 

attempts to create a thinner (and at the same time lighter) 

broadband absorbing coating without growth   (see Section 1). 

These attempts made it possible to reduce the thickness of the shell 

to a value     ), thanks to the use of the following techniques: (1) 

Smooth variation of the dissipation parameter (dissipation length   ) 

with depth (from      to       ) the penetration of the 

incident wave into the shell  ̂ (Fig. 5-a4). Disadvantages: weight, 

dimensions, expensive technology of a shell smooth in depth; (2) The 

shell  ̂ is an echelon of     thin (with a thickness       ) 

homogeneous layers with a decreasing in depth length 
 

 of 

dissipation in the material of the layers (Fig. 5-a5).  

Disadvantages: weight, dimensions, many types of materials with 

different dissipation lengths; (3) Since the reflection from a flat layer 

with strong dissipation is large, it is possible to replace the echelon of 

thin layers with a grating (Fig. 5-a6) of conical wedges (or pyramids 

pointing outward) from a material with strong dissipation. The 

wedges create a layer  ̂ effect with smooth dissipation variation as in 

the approach described above, but with a single type of 

homogeneous absorbent material (the air-wedge structure is light, 

simple and cheap). One drawback remains - an unacceptably large 

shell thickness   for       .    

Relatively recently, a famous line of research on "black holes" as 

black body models in relation to electromagnetic and acoustic waves 

has emerged. This made it possible to view the black body as an 

object absorbing waves, having some relation to cosmology, and also 

to find a new application for the Wentzel - Kramers - Brillouin (WKB) 

 
Fig. 5. (a) Practical versions of a black body based on the use of weakly 

absorbing media: (a1) pinhole camera; (a2) the pinhole camera turned 

inside out is a thick, weakly absorbing shell  ̂; (a3) combination of 

smallness of reflection with effective absorption; (a4) gradient coating, 

small interaction of the absorbing elements of the shell at the frequency 

of the incident wave; (a5) many homogeneous layers; (a6) a set of 

dissipative wedge-pyramids. (b) Black holes instead of pinhole camera: 

(b1) time evolution of bends of a shepherd's whip (bending black hole); 

(b2) a notched bar as a vibrational black hole; (b3) a quasi-cosmological 

version of a black hole; (b4) matched entry into the medium with 

wavelength compression. 
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mathematical apparatus. This direction included the design of the 

structure  ̂    of the absorbing shell  ̂ and the calculation of the 

corresponding diffraction field. Due to the term "black hole", it was 

possible to extend the study of systems with time-constant 

parameters and even re-consider spatially one-dimensional problems 

as one-dimensional black holes. Naturally, about a one-dimensional 

black hole, the shepherd's whip is remembered as the first 

vibrational black hole (Fig. 5–b1). Such a black hole (Fig. 5–b2) 

implies the following physical moments: (1) reflectionless entry into 

the system; (2) a gradual decrease in the group velocity of the wave 

as the layer  ̂ deepens; (3) an increase in the amplitude of the wave 

as it stops; (4) extremely fast dissipative attenuation of the wave in 

the vicinity of the "stopping point" of any recoil to the reflected wave 

(for a shepherd's lash, dissipative absorption means air breakdown 

when the speed of the whip tip passes the threshold of sound speed 

into air). And shepherd does not feel by hand any signal about this 

loud click. There are also known constructions of "black holes",
[12]

 

using the movement of rays in the same way as the movement of 

material particles in the gravitational field (there no cavity  ̂  ̂    

for body  ̂ to be protected, Fig. 5–b3). Naturally, all of these black 

hole models cannot satisfy masking conditions (1C)-(5C) (Section 1). 

According to the article,
[13]

 it is possible, at constant parameters 

of the shell  ̂, to transform the wavelength    in the shell  ̂ abruptly 

       (with a new shell  ̂ thickness     ) with respect to the 

incident wavelength   without reflection at the boundary  ̂  (Fig. 5-

b4), but using the anisotropy of the shell parameters and allowing 

the reactive field (pressed to the border). However, anisotropy 

inevitably entails wave dispersion, which is a strong obstacle to 

broadband absorption. In addition, for a non-spherical shell  ̂ and a 

nonplanar incident wave, the structure  ̂        should depend on 

the direction    of the incident wave and its frequency  , i.e. here all 

the same difficulties arise as for perfect cloaking
[2]

 in Section 2. 

 

5. Parametric Version of Black Body 

In this section, we will consider the possibility of using high spatial-

temporal resolution tools inside the shell  ̂ to simultaneously fulfil all 

conditions (1C)-(5C) masking (section 1) of the black shell. With 

constant time parameters of the PT, it was never possible to jointly 

fulfil the masking requirements (1C)-(5C): 

 

1. To absorb a wave, it is necessary to provide it with the opportunity 

to perform work (convert the wave energy into heat) on the 

absorbing device, and to perform this work, the wave need a spatial 

interval     and a time interval      . Therefore, it was not 

possible to provide effective non-resonant absorption in a layer of 

small wave thickness. 

2. In monochromatic problems with time-constant parameters and 

traditional boundary conditions given on the surface of the body, it is 

not possible to model (without internal contradictions) diffraction on 

a black body. 

3. In systems with time-constant parameters, an obstacle in 

providing broadband effective masking is the inevitable interaction of 

absorbing elements at the frequency of the incident wave. Therefore, 

at constant parameters of the system in time, thick    ) weakly 

absorbing coatings remain practically effective, where weak local 

volume dissipation means a small interaction of absorbing elements. 

 

In parallel with attempts to overcome the aforementioned 

difficulties 1–3, microelectronics, aimed at computer applications, 

developed for a long time and very successfully. According to the 

empirical law of Gordon Moore, the minimum spatial     

(dimensions) and temporal (speed)     scales of microelectronic 

devices are halved every two years (today it is already slower, but 

still over the past 50 years, tremendous successes have been 

achieved), i.e.,  

 

                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. (a) Instant single simultaneous dissection ((a1), (a2)) of space 

along the contour of a single virtual resonator and separation of the 

boundary value problem into external ((a3), (a5)) and internal ((a4), 

(a6)); (b) periodic (with a temporal period               
 

and 

spatial period      ) instantaneous simultaneous dissection of space 

by the contour  ̂    and absorption of the field that hit the resonators 

with a decrease in its energy from level "1" to level "0" in time 

       .   
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At the same time, the lengths of the absorbed incident waves all 

these years remained unchanged due to the preservation of the 

natural conditions of their distant propagation. The text presented 

be-low is an attempt to satisfy the Kirchhoff definition of a blackbody 

(in particular, to find ways to create an absorbing shell  ̂ with a 

thickness    ), based on the operations of controlling the 

boundary conditions of the boundary value problem with a very high 

spatial-temporal resolution         ,                    (    − 

minimum space scale of elements of shell  ̂) (see 
[14,15]

). Along the 

way with this task (fulfilment of conditions (1c) and (5C)), conditions 

(2C)-(4C) are also fulfilled. Suppose that for this purposes we can on 

the minimal spatial interval      , for a very short time 

            , perform a deep modulation of the parameters of the 

medium (or boundary conditions on its elements) in the region  ̂ . To 

describe the modulation depth of parameters (for simplicity, in an 

acoustic problem), let us formulate a certain scalar parametric 

boundary condition for the field        on an arbitrary section 

   ̂ ̂ of the surface of some microelement  ̂ of the shell (which we 

are going to make black):     
          

          ̂ ̂     where 

      ,        are time-varying coefficients (parameters similar to 

the boundary condition (2) in section 3.5). Deep modulation means 

the fulfillment of the condition                  , where 

     |             |,      |             |. In the acoustic 

case, this means switching the boundary of the “(soft) - (hard)” type, 

and in the electromagnetic case, for example, switching the 

boundary of the “(metal) - (vacuum)” type. Usually (in contrast to the 

case considered in this work), modulation of parameters, for 

example, in parametric resonances, means weak modulation when 

the condition                 is satisfied. The effect of such 

modulation accumulates to large values over many periods of 

oscillation. In addition, there is a widespread judgment that a 

problem with fast modulation of parameters (without 

synchronization with an external stimulus) can be described as a 

problem with constant parameters equal to the time average. In the 

case considered in this article, such a judgment is not applicable. 

 

5.1. The way to solve the Problem 

In a three-dimensional (as opposed to one-dimensional) problem 

with parameters constant in time, a non-scattering entry into the 

body is impossible without the complete exit of all the entered wave 

energy from the body. Therefore, we will have to (controlling in time 

the parameters of the shell  ̂ structure  ̂   ̂      to separate in 

time the process of admission (or propagation) of the field and the 

process of absorption of the field (transformation of the field into 

heat). Thus, if we begin to alternate with a period       in time 

the processes of field propagation inward  ̂ (of duration       

   ) and the process (of duration         ) of complete absorption 

of the field inside  ̂ (naturally, in the process of such intense 

absorption, the shell  ̂ cannot be transparent, so we will consider it 

completely opaque), then Kirchhoff's definition of a black body 

(Section 3.1) and conditions (1C)-(5C) (Section 1) the disguises will be 

performed, since the modulus | | of the reflection coefficient from 

such a structure in the one-dimensional case will have an order of 

magnitude at any small thickness. Now there is only one question  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

left: how to ensure full absorption of the field in a shell  ̂ with a 

thickness      during the time         ? 

Let us imagine some foamy 3-dimensional structure  ̂       with 

infinitely thin walls with the modulus |     | of the reflection 

coefficient (as applied to the one-dimensional problem) located 

along the contour  ̂     (Fig. 6). 

We will call the single-connected regions (with a linear scale 

     ) inside  ̂    virtual resonators: when |     |    there is 

no resonator, but |     |     when it is. Inside each such region 

there is an absorbing dipole (with a size      ) tuned to the 

maximum absorption (with an absorption cross section     
 ) at 

discrete natural frequencies   ,   ,   ,… of the given resonator (see 

Fig. 7). The zero natural frequency      in such resonators with 

binary (|     |       ) modulation of the reflection coefficient is 

absent, and the minimum nonzero frequency                 

is so high that when |     |    the incident wave freely (without 

scattering) passes through the array of high-frequency dipoles. With 

instant (in time          ) simultaneous dissection (switching on 

|     |   ) of space along the foam like contour  ̂    of the space 

regions inside the virtual resonators, they become completely 

independent of each other. 

Thus, in contrast to the systems considered in Sections 2 and 3 

with parameters constant in time, the absorbing dipoles in the 

structure  ̂      do not interact with each other at the frequency of 

the incident wave, which has always been the cause of the 

dependence  ̂       on   and  , i.e.  ̂       . 

Fundamentally important is the fact that when the opacity mode 

(|     |   ) is quickly turned on, almost all points (except for a strip 

with a thickness           along the walls) inside the virtual 

resonator “do not have time to know” about what happened on the 

contour  ̃   . Therefore, the field at these points continues to run as 

in an incident wave. Therefore, the instantaneous spatial distribution 

(of the order of magnitude, see Fig. 7) of the wave field within one 

virtual resonator becomes the initial conditions for damping (due to 

the dipole) oscillations inside the resonator. In addition, an arbitrarily 

small (with size      ) fragment of the incident traveling wave. 

These oscillations decay the faster, the higher the first natural 

frequency            and the smaller    . These oscillations can 

be damped over time       if the shell  ̂ is divided (along the 

normal to its surface) into many small resonators, thereby reducing 

the time         (and averaged on period                 

 
Fig. 7.  The hierarchy of the scale of the boundary value problem: the 

location on the logarithmic axis of the frequencies (normalized to the 

lowest natural frequency            of the virtual resonator) of the 

frequency range    ̂             
 
of the incident waves, the 

natural frequencies of the virtual resonator, and the frequency 

distribution of the resonant absorption cross section     
  of a specially 

tuned dipole (dipoles). 
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intensity) of external reflection of the incident wave by the structure 

during periodic (with a period  , where, see Fig. 8-a) functioning of 

the structure as shown in Fig. 6-b. 

This was necessary to separate in time the processes of 

propagation and the absorption process (or, in other words, to 

combine the reflectionless entry of waves into the black body 

required in Kirchhoff's definition and their complete absorption in it). 

To estimate roughly the incident wave scattering by parametric 

black body we consider briefly a one-dimensional analog of structure 

 ̂      with contour  ̃    (cyclical wave-bolt 
[14,15]

), which is a train of 

walls of controlled transparency i.e., with reflection coefficient       

which are equidistant (with a spatial period    ) located in the path 

of the incident wave. Any two adjacent walls of controlled 

transparency are a virtual resonator with length     and own 

frequencies         . Fig. 8-a, shows the modulus |     | of the 

reflection coefficient of one (each) wall as a function of time. The 

upper estimate of optimal (minimum) average over the period   of 

the modulus of the reflection coefficient (Fig. 8-b) gives the value 

| |         , at                  , where            , 

           is the microstructuring coefficient in time, 

           is the microstructuring coefficient in space,   is the 

decay damping factor of a wave over a single path across the 

resonator (until we specify the damping mechanism (wave 

absorption by walls, leakage high-frequency field components 

through the resonator walls, wave absorption in the cavity 

environment, wave absorption by resonator dipoles, etc.). 

Fig. 9 shows the conversion of one virtual resonator to black shell 

 ̂ with arbitrarily small thickness due to the microstructuring the 

shell  ̂. Virtual resonators in a contour  ̂    can have an arbitrary 

convex shape (not only square) and dimensions     varying from one 

to other in space. 

 

5.2. One Version of Walls of Controlled Transparency 

In this section, we will consider a possible arrangement of walls with 

variable transparency [on the parametric version]. The metal grid 

(Fig. 10-a) is the equivalent of the metal plane. This is very important 

for the point about the absence of zero natural frequency for the 

resonator formed by metal grids. This property of a mesh woven 

from metal wires is used for parabolic reflectors in radars. Having 

accepted        , we will obtain (for       ) an estimate 

|  |  |  |            |        |     of the modulus of the 

reflection coefficient |  |   of the wall of the structure  ̂      in an 

opaque state. Now let's think about how to make the wire mesh 

transparent. Consider an infinite single (Fig. 10–b) ideally conducting 

wire of infinite length and radius, on which a plane linearly polarized 

electromagnetic wave with amplitudes    and    of both electric and 

magnetic fields, respectively, and a propagation vector  , is normally 

incident. The ratio of the modulus |   | of current in one wire of a 

periodic (with period   ) lattice (Fig. 10-c) wires to the modulus |  |   

(Fig. 10-b) of current in a single wire (generated by a linearly 

polarized incident wave with amplitudes    and    of both electric 

and magnetic fields, wavelength   and direction  ) can be estimated 

as |   |  |  |         |         |    at (when the lattice of 

wires becomes equivalent to the metal plane and the current    is 

equal to the electric current through a part of the metal plane in the 

form of a tape with a width         , Fig. 10-c). 

Such a large difference in the amplitudes of the currents is due to 

the presence of electrostatic interaction between the wires in the 

lattice (the angular size of the near wire from the side of the 

neighbouring one is equal    ). It is enough to cut the wires in the 

lattice into pieces of length     (with the corresponding parameter   

           of electrostatic interaction) in order to further 

evaluate the current     (Fig. 10-d) in one of the wires of lattice of 

splitted wires as the current        (Fig. 10-e), which is excited by 

the incident wave in a single splitted wire. Next, insert into the cuts 

of the wires (Fig. 10-e) electronic switches with a through capacity   

    (really           ). Thus, the reflection coefficient from such a 

"transparent" (when the switches are closed and do not con-duct 

current, Fig. 10-f) lattice of cut wires, we estimate as |  |   

                √    ⁄   , where    and    are the electric and 

 
Fig. 8. Cyclic wave bolt in a one-dimensional problem: (a) plots of the 

modulus of the reflection coefficient of the walls, (b) estimation of the 

modulus ( mean over the period  ) of the reflection coefficient from the 

one-dimensional structure  ̂      with ideally transparent (|  |    ) 

and ideally opaque (|  |    ) reflection coefficients and 

instantaneous switching (     ). 

 

 
Fig. 9. Microstructuring (       ) and evolution of the foam-like 

structure  ̂      (or contour  ̂   ) from a single virtual resonator (a), to 

an array of virtual resonators similar to a single one (b), to an array of 

arbitrary shape (c), to an array of arbitrary shape with a cavity  ̂  ̂  
inside  ̂ (d), to an increase in the cavity with a decrease in the shell  ̂  
thickness   without an increase in the relative cross section        

        of backscattering of the structure  ̂ for external (   ̂) 

sources of incident waves (e). 
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magnetic vacuum constants, respectively,      is the maximum 

frequency of the incident wave. A rigorous solution to the problem of 

the transparency for metal strip structure is given in Cohn S.B.
[16]

 The 

above considered walls of controlled transparency form the main 

functional element of the black shell - a virtual resonator (Fig. 10–g). 

Metal wires of arbitrarily small thickness and length are capable of 

creating an undesirable stray field with a scattering cross-section size 

much larger than the geometric dimensions of the conductor (for 

example, a metal grid - a reflector). Therefore, for switching the 

transparent and opaque states of the walls, galvanically independent 

miniature high-speed optoelectronic switches controlled by signals 

from optical fibers were chosen. For the simultaneous on-off for 

optoelectronic switches, the lengths of the optical fibers (taking into 

account branching) must be the same. The optoelectronic switch 

reacts to the average (during switching time about          s) light 

intensity in the optical fiber. Therefore, to change the state of the 

key at the right time, it is necessary: many periods of the light wave 

and a single-mode mode in an optical fiber. For a certain 

characteristic wavelength    of laser light in a fiber (for example, 

             m, Fig. 10-h), the condition of a lot of periods of a 

light wave on the switching interval is necessary (switching occurs 

after a change in the time average laser intensity “   ” or 

“   ”)          (where    is the speed of light in the fiber) and 

the conditions of multiple wavelengths of light on the fiber radius 

(single mode in the fiber)        . Glass parts create a field of 

scattering proportional to only the relative average volume of the 

glass (relative to the air volume of the resonator     
  in the ideal). 

To power the optoelectronic switches, you can also use the time 

average level of light intensity in the fiber. However, it is necessary to 

require that the relative volume of glass in the resonator should be 

small, i.e.              
           , where             m 

- characteristic radius of one-mode optic fiber. All fibers inside the 

resonator have the same length so that the switches should be 

triggered simultaneously. Now we require the smallness of relative 

total volume of all smallest metal details (of length     and radius   ) 

in VR, i.e. the condition:              
           . The 

considered model uses ultra-fast operations with metal pieces. We 

assume that it is possible to set (during the time much smaller then 

   ) classical boundary condition on the metal surface (zero of the 

tangential component of the electric field). But at arbitrarily high 

switching frequencies, the properties of the electrons of a metal as a 

gas may enter the game. Therefore, we need to formulate the 

conditions under which the switch would represent a sequential 

change in time of the static charge distributions on the metal surface. 

At      Kelvin, the characteristic Maxwell’s relaxation time of some 

perturbed charge distribution in the metal to the equilibrium 

distribution is                 s, and the plasma wavelength in 

the metal is          m. Thus, to ensure the static nature of 

processes in metal elements with a length    , the following 

conditions must be met:        ,       . 

 

5.3. Algorithm for solving the problem of diffraction by a parametric 

black body 

For a strict (non-compromise) fulfilment of the Kirchhoff blackbody 

definition, it is necessary to eliminate the fundamental (for systems 

with constant parameters) contradiction between the reflectionless 

entry of all waves into the layer  ̂ and the total absorption in  ̂ all of 

the same waves crossed from outside to inside the surface  ̂ . Using 

the cyclic wave gate algorithm (see Fig. 8) or controlling the 

transparency (reflectance coefficient      ) of the walls of the foam-

like layer  ̂ structure  ̂     , we separate two processes in time: (1) 

the process of wave propagation from region    ̂ to region  ̂ (in 

time intervals of duration        ), when the field penetrates into 

the layer  ̂ no deeper than to its inner surface  ̂ , without meet any 

scattering obstacles; (2) the process of absorbing the field or 

converting it into heat in loads (the loads are resonantly tuned to the 

natural frequencies of the virtual resonator (see Fig. 10), among 

which there is no zero frequency, and the smallest nonzero 

frequency is of the order               ) of dipoles inside 

virtual resonators in intervals of duration        . At         

 
Fig. 10.  How to create a wall of controlled transparency: (a) a grid of 

uncut wires as equivalent to a metal plane (radar reflectors); (b) current 

   in a single uncut wire; (c) an array of parallel wires (with currents    ) 

as equivalent to a metal plane; (d) the array of the cut wires and the 

smallness factor   of the electrostatic interaction of the parallel cut 

wires and the current      in each wire; (e) a single wire with cuts into 

which optoelectronic switches are inserted with a through capacity     

and a current        (at     ) in it; (f) transparent wall - a metal grid 

with cuts (i.e. with closed optoelectronic switches and light intensity "0" 

in the fiber), and vice versa (a) opaque wall (a) is a grid with open 

optoelectronic switches in cuts and light intensity "1" in fiber; (g) a 

virtual resonator with an absorbing dipole and walls, the transparency of 

which is determined by the light intensity in the optical fiber, the optical 

length of all fibers (taking into account branching) is the same for 

simultaneous switching on of all optoelectronic switches; (h) moving of 

laser pulses along the optical fiber. 



 

 
30 

Arabadzhi V. V.  Nano Progress 

Nano Prog., (2021) 3(6), 19-34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(at         ) the process of diffraction of the incident wave by an 

ideal parametric black body can be represented as a sequence (with 

a period     ) of solutions of the Cauchy problem
[17]

 on the field 

propagation from the area     ̂ (at     ) separated from each 

other by arbitrarily short time intervals (at |  | =1) absorption of the 

wave field inside  ̂ and, respectively, instantaneous (ideally) zeroing 

of the field at points     ̂, as shown in Fig. 11. Note that at the 

beginning of each new time interval of the shell  ̂  transparency, the 

field outside  ̂ (    ̂) is nonzero (      ), and inside  ̂  (    ̂) 

the field is zero (     ). Therefore, the field can only propagate in 

one direction: from outside  ̂ to inside  ̂ (as required by the 

definition of the blackbody of Kirchhoff). Thus, due to the separation 

in time (by means of commutation in time of the shell  ̂  parameters) 

of the intervals of field propagation and its absorption 

(transformation into heat), we managed to combine the 

transparency of a black body at the entrance of a wave into it, 

prescribed in Kirchhoff's definition, and the total absorption inside 

the black body. It was impossible when trying to set the boundary 

conditions (2) (values     ,      unvariable in time and values   

        variable in time) on the black body surface (see section 3.5. 

above). For a linear boundary value problem with constant 

nonsingular coefficients of the hyperbolic wave equation, one can 

construct (at least numerically) some linear operator (Cauchy 

operator  ̂ ={ ̂  ,  ̂  ,  ̂  ,  ̂  }, integral over space) that solves 

the Cauchy problem on the evolution (propagation) of the spatial 

distribution of the field in time from the moment       to the 

moment         (provided that in a given time interval 

          the shell  ̂ is transparent and its parameters are 

constant in time):            ̂            ̂           and 

           ̂            ̂           (  is the strength of the 

electric field,    is the strength of the magnetic field). 

To describe the results of the process of instantaneous (over time 

     ) absorption, we will use the operator  ̂ of zeroing the field 

in the area  in the time interval            : 

 

           ̂            for    ̂, 

           ̂                  for    ̂ , 

           ̂            for    ̂, 

           ̂                    for    ̂.   

 

The speed (instantaneousness) of the field zeroing means that 

the points    ̂  do not have time to know about the field zeroing at 

points    ̂, with the exception of points    ̂ remote from the 

surfaces  ̂ ,  ̂  no more than a distance         that we can make 

much less than the layer  ̂  thickness   .      

  Now let us formulate a step-by-step algorithm for solving the 

diffraction problem of a parametric black body. Let for all   be given 

an arbitrary initial spatial distributions of fields         and          

at the moment      .   

 

Step 1: we cut out (zero out, absorb) the fields   and  , in the region 

 ̂ :   ̅        ̂           ̅        ̂         . 

 

Step 2: fields  ̅        and  ̅        propagate inside the transparent 

shell (becoming the initial conditions of the Cauchy problem) and in 

time   are transformed to the form   

 

            ̂   ̅        ̂   ̅       and 

            ̂   ̅        ̂   ̅      .    

 

Step 3:  ̅          ̂           . 

 ̅          ̂           . 

 

Step 4:             ̂   ̅          ̂   ̅        , 

             ̂   ̅          ̂   ̅          

 

Step 5:   ̅           ̂            . 

 ̅           ̂            . 

 

Step 6:              ̂   ̅           ̂   ̅           

             ̂   ̅           ̂   ̅         . 

 

…etc. The above algorithm for solving the problem of diffraction by 

parametric black body is universal: any shape of a body, any wave 

dimensions of body, any shape of an incident wave front. However, 

the difficulty is in a much larger amount of computation than at 

traditional approaches (as in Section 3.5.). Fig. 11 represents the just 

described sequence of operations of a parametric (cylindrical) black 

shell and the leading edge of a plane incident wave: the area of non-

zero field is shown in black and gradually (periodically) fills the white 

area of the zero field. Such a procedure for solving the diffraction 

problem can be called the "diffraction of the incident wave on 

periodically updated initial conditions" (unlike the traditional 

"diffraction on boundary conditions"). 

 
Fig. 11.  Illustration of an algorithm (sequence of operations) for solving 

the problem of diffraction of a plane wave (black region) falling from the 

left onto a black box  ̂ (or black shell) of cylindrical shape with outer  ̂  
 

and inner  ̂  surfaces and thickness  . 
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5.4. Flat Thin Parametric Black Screen 

The classical scenario (considered by Kirchhoff himself) in the study 

of diffraction by a black body  ̂ is the diffraction of a plane wave at 

normal incidence on a thin flat black screen  ̂. We emphasize: in this 

case, a thin (thick) flat black screen is a black body without a cavity 

(i.e.  ̂  ̂   ) and with a finite transverse dimension    . Now we 

consider the diffraction of a plane incident wave on a plane black 

parametric screen. Let's imagine a plane (for example, 

electromagnetic, linearly polarized) smooth (on distance) incident 

wave with the electric field strength                     the 

sum                     (where            ,      

            ̅           ̅              ,        at,   

at    ,              ) plane non-intersecting homogeneous in 

the transverse directions rectangular wavelets           (let’s call 

them so) of length   traveling in the direction  . 

Such impulses run with speed    along axis     , without changing 

their structure in the longitudinal    and transverse    directions 

(       ,|  |   ,      , Fig. 12–a) without crossing and 

without gaps between adjacent wavelets. This is a property of the 

wave equation with separable variables. However, provided that 

transverse width     of pulse is finite, such impulse diffuses over 

time in space, starting from their edges (where). We note: such a 

representation is possible only for non-dispersive waves; each of the 

wavelets can be instantly removed (absorbed) without any effect on 

the movement and shape of the remaining wavelets. Suppose that at 

some moment       the left and right boundaries of the wavelet 

         have coincide, respectively, with the left and right 

boundaries of the plane layer  ̂       . At the moment    , 

the instantaneous absorption of the field in the layer  ̂ is switched 

on. Now the action of an infinite flat black parametric black screen  ̂   

on the wave field can be expressed by periodic (with a period 

     ) instantaneous absorption of the field in the layer  ̂. At the 

moment      immediately after the instantaneous absorption of 

the incident wavelet         , the energy of the scattered field is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accumulated in the initial condition             (     ), 

which generates at       the wavelet  ̅                  , 

(Fig. 12-b) compensating the field of the incident wavelet at      

(Fig. 12-c). A pulse of inverted polarity is formed during         in 

the process of absorption of an incident pulse that has entered the 

region  ̂. It is enough to create in the area  ̂  (on the launch pad 

     ) a field of a traveling pulse (i.e., a special space 

distribution of fields         and        ) for one instant       and 

then this pulse will run, carrying away the final energy (in the form of 

wavelet  ̅        ) spent on its creation and equal to the absorbed 

energy of the pulse          . In our case, the tool for creating 

the distribution           (     ) is the instantaneous 

absorption of the pulse           from the wavelet sequence 

           of the incident wave         . Let us turn to the 

non-one-dimensional case (in particular, to the two-dimensional 

case, see Fig. 13). A wavelet    infinite in the direction    (a 

component of the incident wave) propagates (shifts to the right, see 

Fig. 13-a) without changes, i.e.  ̂                      , 

where          ,  ̂  the Cauchy operator of field evolution in time 

 . 

In Fig. 13-b shows roughly a time evolution of a wavelet     

 ̅        bounded in the direction    by size   (     ). The 

area marked in black “knows nothing” about edge waves and 

continues to move (and transfer energy) as an infinite (i.e. as at 

   ) wavelet (Fig. 13-a). The growing region of a nonzero edge 

wave is shown in gray.  The time-averaged (and averaged in area  ̂) 

relative contribution   (when the cancelling wavelet  ̅          

generated by the parametric screen  ̂ periodically restores the 

uniform (along   ) field distribution, and the edge diffusion wave 

 
Fig. 12. (a) Representation of a one-dimensional plane smooth running to 

the right incident wave   
 
by a sequence     

 
of plane one-dimensional 

traveling wavelets   ; (b) instantaneous absorption generates anti-

wavelets       
 
at the launch pad; (c) the sum of the wavelet fields 

   
and    . 

 

 
Fig. 13. (a) Propagation of a one-dimensional single flat (with transverse 

length     and longitudinal length  ) wavelet         ; (b) 

Propagation and evolution of an anti-wavelet         (the black color 

indicates the area where the traveling field is one-dimensional, the gray 

color indicates the expanding region of the nonzero field of edge 

waves; (c) Parametric thin black screen  ̂ (thick black line) conformal to 

a spherical incident wave satisfying Kirchhoff’s boundary conditions. 
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decreases as  | ̅ |        of the edge waves can be estimated as 

the sum         ∑     
             , where          the 

Riemann zeta function of argument 2. Thus    , at     , and 

absorption cross section       (average on the incident wave 

period      ) is equal to geometrical cross section       for the 

flat thin black screen. This means that, on average, over the period 

      of the cyclic wave shutter, the Kirchhoff boundary 

conditions are satisfied for a thin black flat screen: 

                                           on the 

illuminated side of the screen and                                

   on its back. Similarly, one can show the fulfilment of the Kirchhoff 

boundary conditions in the diffraction problem on a thin black 

conformal parametric screen (see Fig. 13-c), which completely 

repeats the incident wave front (when one of the surfaces of 

constant phase passes through a given point of the screen). 

 

5.4.1. The flat Huygens source as a shadow source and the 

equivalent of a thin black screen 

Now we add the consideration of active (non-dissipative) flat thin 

black screen. We consider two spatially one-dimensional problems 

for monochromatic electromagnetic waves: (a) a plane linearly 

polarized electric field wave with a complex amplitude   (along the 

axis    ) propagates from left to right (in direction   along the axis  

   ); (b) in free space (perpendicular to   ) two planes with currents 

                                 (to the left at the point 

   ) and                         (to the right at the point 

   ) are located at a distance    from each other (the distance    

can be arbitrarily small (   ), but with a greater amplitude of 

currents |  | |  |  |     |), where       is the complex amplitude 

of the flat current (at a point    ) which is required to create a 

linearly polarized wave with a complex amplitude    of the electric 

field. Such a system (Huygens source), consisting of two currents (not 

metals with currents, but only currents or flows of charges in a 

vacuum), is transparent to waves, does not radiate to the left, and to 

the right this system emits a wave that completely compensates 

incident wave if    . Now let's make the transverse (along the      

coordinate) size of the boundary value problem with a finite scale  

    (see Fig. 14-a), and as a result we will get a shadow source. It 

is easy to see that such a Huygens source (source of shadow) is a thin 

(possible   ) flat black screen. The width of the penumbra 

increases as  √   with the distance    from the Huygens source 

edge in the direction  . Directly behind the source, the field is equal 

to zero, and immediately ahead of the Huygens source, the field is 

equal to the field of the incident wave, as required by the Kirchhoff 

approach (Section 3.5.) if    . i.e. there the Kirchhoff boundary 

conditions are satisfied (as above for parametric black screen):  

 

                                             , 

                                   .  

 

On the other hand, the passive (dissipative, see Fig. 14-b) 

realization of a thin black screen needs condition     (not a thin) 

and can’t satisfy Kirchhoff’s boundary condition due to significant 

penumbra field along thickness    . This shows incorrectness of 

traditional statement of the problem with dissipation in the screen 

with parameters constant in time. 

 

6. Conclusions 

In the presented article, the fundamental difficulties of designing and 

describing a black body with constant parameters (as well as in a 

monochromatic representation) are formulated: (a) thin (   ) 

shell is not possible because to transform a wave into heat (the 

internal problem of a black body),  the wave needs space    and 

time      to make the work with the absorbing element; (b) the 

difficulty of creating broadband absorption is caused by the 

interaction of the absorbing elements at the frequency of the 

incident wave; (c) the impossibility of a rigorous description of 

diffraction on a black body (external problem of a black body) using 

any boundary conditions on its surface is due to the fact that strict 

fulfillment of the reflectless entry of the incident wave into the black 

body (with constant parameters and at monochromatic 

representation) inevitably means the same unhindered exit from the 

body, i.e. not a black body, but a transparent body. It is shown that 

the above three difficulties can be overcome by the parametric 

version of the black body, described in this article, designed for 

waves without dispersion. The internal structure  ̂      of the 

parametric black shell  ̂ (internal blackbody problem) is a foam-like 

contour  ̃ with flat walls of controlled transparency or reflection 

coefficient      . In the parametric version of the black body, the 

deepest binary (switching         ) modulation of the shell 

parameters is used at the minimum space-time scales of modulation 

(traditionally, monochromatic shallow parametric modulation with a 

slow accumulation of the effect in time was considered) and is 

qualitatively characterized by the expressions “need to be in time”, 

“need to have time", "need to have enough time to make"...  In this 

case, the space of the parametric shell is periodically dissected in 

time by a foam-like opaque      contour  ̃ into simply connected 

areas (virtual resonators) so quickly (in time      ) that almost all 

points of these fragments (except for points at a distance       

 
Fig. 14. The flat Huygens source as a shadow source and the equivalent 

of a thin black screen: (a) 2D problem, power flux lines of plane incident 

wave (with complex amplitude   ), of Huygens source (generating the 

wave with amplitude   ) and for this source in the incident wave field; 

(b) incompatibility of passive (dissipative) absorption and screen of 

thickness    . 
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  from the dissecting contour  ̃) do not have time to do find out 

about the dissection that occurred and their complete isolation from 

the rest of the space. A wave field that suddenly finds itself inside 

simply connected spatial fragments becomes the initial conditions for 

oscillations at the Eigen frequencies of virtual resonators. Since 

virtual resonators do not have a zero natural frequency (this is how 

the walls of the cutting contour  ̃ are made), the lowest natural 

frequency is determined by its geometrical dimensions     

 

as 

           . An absorbing dipole located inside each virtual 

resonator (at      the dipole is insensitive to a low-frequency 

incident wave), have been tuned to very high natural frequencies of 

the virtual resonator, and within a time            (where     

is the  -factor of the resonator in the presence of an absorbing 

dipole) during several periods has time to convert the energy of the 

resonator field into heat. By reducing the size of virtual resonators 

(with dimensions      ), we can make the damping time of 

oscillations in them much shorter than the free travel time      of 

the incident wave through the shell  ̂ thickness   in the e transparent 

state (at     ). The latter circumstance makes it possible to 

combine the free entry of a portion (duration     and length  ) of 

the external field into  ̂ and its “instantaneous total absorption” 

inside  ̂. Thus, a parametric blackbody periodically (with a period 

          ) absorbs the energy of the external field in 

portions       , where    is the time-average power flux density 

of the external field   . Due to the separation in time (as opposed to 

systems with time-constant parameters) in the parametric version of 

the black body there is no interaction of the absorbing elements 

(dipoles inside virtual resonators) at the frequency of the incident 

wave. Therefore the parametric version of the black body is free 

from unwanted selectivity for frequency and direction of the incident 

wave. The lower frequency of the incident wave is not limited by 

anything (which is impossible for a body with parameters constant in 

time). And the upper frequency of the incident wave, due to the 

device of the parametric layer, is obviously higher than all 

frequencies of the incident waves used for long-range propagation. 

Despite the simplicity and linearity of the parametric blackbody idea, 

this solution cannot be obtained by synthesizing any monochromatic 

solutions (when        ). Before this solution, one can only 

"guess". The boundary value problems corresponding to the 

transparent and opaque states of the walls of the foam-like 

dissecting contour (structure  ̂      of layer  ̂) cannot be connected 

analytically, since their connection requires an infinite (or with a 

width          ) Fourier integral, and any sinusoidal 

component taken separately will be devoid of physical sense. A large 

number of figures in the article are due to the difficulties in 

describing the boundary value problem by mathematical formulas at 

the temporal representation of the problem. Only separate blocks of 

the boundary value problem can be described by formulas: reflection 

from a structure, attenuation of waves in virtual resonators, field 

propagation in a transparent state of the structure  ̂     .    

     A specific (Section 4.2) parametric version of the blackbody is 

based on the binary control of the conductivity of optoelectronic 

switches. Conductivity is a dissipative parameter of the 

electromagnetic field equations. Therefore, such control cannot 

generate any instability of the structure  ̂     . 

     Thus, the parametric version of the black body with an arbitrarily 

small (infinitely small) thickness     of the black shell  ̂  satisfies 

the Kirchhoff definition and ensures: (a) the fulfillment of conditions 

(1C)-(5C) of masking (Section 1); (b) solving the internal (converting 

the incident wave into heat) blackbody problem; (c) solution of the 

external (diffraction of the incident wave by a black body) black body 

problem. 

      It is shown that the Kirchhoff boundary conditions on a thin flat 

black screen (when there is no cavity  ̂  ̂   ) are accurate for a 

parametric black screen (Section 4.4) and for its active version 

(Section 4.4.1). At the same time, it is shown that, in the general case 

(in 2D-3D problems and at  ̂  ̂   ), it is impossible to set boundary 

conditions on a black body (there can be no boundary conditions on 

the surface of a black body) without violating any assumptions 

formulated in Kirchhoff's definition. 

        It is surprising that Kirchhoff's definition of a black body speaks 

of an infinitely thin (or arbitrarily thin) absorbing layer (or shell) that 

solves the external and internal problems of the black body. Perhaps 

it was the result of Kirchhoff's amazing physical, esthetic or stylistic 

intuition. But, may be, Gustav Kirchhoff himself had already 

considered a parametric blackbody (the mathematical foundations of 

this approach were known to him), but perhaps he did not consider it 

possible to publish because it might seem too far from 19th century. 
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